Referatai, kursiniai, diplominiai

   Rasti 154 rezultatai

Laivo įgula
2011-01-20
Lietuvos Respublikos Vyriausybė 1991m. Spalio 12d. priėmė nutarimą „Dėl Lietuvos Respublikos prisijungimo prie tarptautinės jūrų teisės dokumentų“, Lietuvos Respublikos Seimas 1995m. balandžio 12d. ratifikavo 1948m. Tarptautinę Jūrų organizacijos Konveciją, ir mūsų šalis tapo pilnateisė Tarptautinės jūrų organizacijos narė. LR jūrų statutas apibrėžia: LR valstybės vėliavos ir kitų vėliavų naudojimas, laivo savininką, laivo įgulą, eigos pamainas ir budėjimus (vachtas), laivo įgulos veiksmus, esant pavojingai situacijai, laivo įgulos narių atsakomybę už šio statuto nuostatų vykdymą. Lietuvos Respublikos jūrų statuso privalo laikytis kiekvienas įgulos narys, esantis laive. Už statuso laikymasi atsako laivo kapitonas. Jis įgyvendina LR įstatymus Lietuvos laivuose, nepaisant, kurioje pasaulio šalyje jis yra. Šis statutas negaliotu be tarptautinių sutarčių.
Kita  Referatai   (10 psl., 18,92 kB)
Elektrosauga
2011-01-19
Tarptautiniuose dokumentuose ir nacionaliniuose teisės šaltiniuose akcentuojama žmogaus teisė į sveikas ir saugias darbo sąlygas. Žmogaus egzistavimo aplinkoje egzistuoja įvairios prigimties pavojingi ir kenksmingi veiksniai, galintys sukelti traumas, sutrikdyti darbingumą arba pakenkti sveikatai. Vienas iš tokių veiksnių – elektra. Todėl elektros inžinerijos ir giminingų specialybių specialistams reikia žinoti apsaugos būdus. Šios disciplinos tikslas supažindinti apsaugos nuo elektros pavojingais ir kenksmingais veiksniais apsaugojimo jų būdais. Pavojingi ir kenksmingi dažniausiai yra elektros įrenginiai ir gamtos reiškiniai.
Darbo ir civilinė sauga  Kita   (31 psl., 108,41 kB)
Pastaruosius dešimtmečius pasaulyje sparčiai tiriamos ir kuriamos naujos keraminės medžiagos, tobulinamos jų gamybos technologijos, auga keramikos gamybos apimtys, plečiasi keraminių medžiagų taikymo technikoje galimybės. Dabartiniu metu be keramikos neįsivaizduojamos tokios svarbios pramonės šakos kaip elektrotechnika, energetika, radiotechnika, atominė energetika, aviacinė ir raketinė technika, šiluminė technika, automobilių pramonė ir daugelis kitų. Šiuolaikinės keramikos terminas apima vis daugiau medžiagų klasių, net ir stiklo bei cemento gaminius ir jų technologijas. Šiame darbe fundamentalios žinios apie šiuolaikinę keramiką siejamos su jos naudojimu ir naudojimo perspektyvomis.
Chemija  Referatai   (83 psl., 3,78 MB)
Kas yra prekė? Literatūroje pateikiami tokie prekės apibrėžimai: „Prekė – tai marketingo komplekso elementas, apimantis sprendimus ir veiksmus, susijusius su pardavimo objekto kūrimu ar keitimu; Prekė yra visa tai, kas gali tenkinti vartotojų norus ir poreikius, būti siūloma rinkoje pirkėjų dėmesiui, pirkimui ir vartojimui ar naudojimui; Prekė yra produktas skirtas mainams. Marketinge apibrėžiant prekę, akcentuojamas vartotojų poreikių patenkinimas, todėl išsamiausią prekės apibrėžimą marketinge pateikia Ph. Kotleris: Prekė yra visa tai, kas gali patenkinti vartotojų poreikius, ir tai, kas siūloma rinkai, siekiant pritraukti vartotojų dėmesį, plėtoti vartojimą, įskaitant fizinius objektus, paslaugas ir idėjas.“ [3,p.21].
Administravimas  Kursiniai darbai   (30 psl., 74,46 kB)
Nanotechnologijos yra tarpdisciplininė taikomojo mokslo ir technologijų šaka, apimanti darbą su mažomis medžiagų dalelėmis - nanodalelėmis, matuojamomis nanometrais (viena milijardinė metro dalis) bei jų pritaikymą technologijose. Nanotechnologijos apima medžiagas ir objektus ne didesnius nei apytiksliai 100nm. Nanotechnologijos remiasi taikomosios fizikos, medžiagų mokslo, koloidų mokslų, įrangos fizikos, supramolekulinės chemijos, šiek tiek mechanikos ir elektrotechnikos disciplinomis.
Vadyba  Namų darbai   (8 psl., 13,01 kB)
Verslo ekonomika
2010-11-20
Verslo ekonomika – vienas iš profesinei kvalifikacijai įgyti dėstomų dalykų. Šio dalyko tikslas – ugdyti supratimą apie verslą, jo vaidmenį visuomenėje, gebėti apskaičiuoti įmonės veiklos ekonominius rodiklius, pagrįsti veiklos naudingumą. Konspektuose apžvelgiamos verslo rūšys, tikslai, aplinka, Lietuvos ūkio sistema, ūkio plėtros galimybės ir tendencijos. Studentai supažindinami su verslo įmonių įvairove, jų veiklos ypatumais, steigimo tvarka, materialinių bei darbo išteklių formavimu ir jų poreikio nustatymu. Aptariama, kaip apskaičiuoti išlaidas ir pajamas, pelną ir pelningumą, nustatyti nenuostolingų pardavimų mastą.
Ekonomika  Konspektai   (103 psl., 169,79 kB)
Prie kiekvieno eksploatuojamo inžinerinio statinio ar žmonių lankomo objekto privalo būti įrengtos laisvos prieigos transporto priemonėms, leidžiančios su mažiausiomis laiko sąnaudomis įlaipinti ar išlaipinti keleivius, pakrauti ar iškrauti krovinius, atlikti savo funkcijas. įvairioms specialioms tarnyboms (greitoji medicinos pagalba, policija, avarinės tarnybos, priešgaisrinė apsauga ir pan.). Rengiant transporto privažiavimus ir stovėjimo vietas atsižvelgiama į aptarnaujamo objekto specifiką, kuri nusako reikalingus inžinerinius sprendimus ir jų apimtį.
Inžinerija  Referatai   (13 psl., 184,19 kB)
Šiek tiek didesnis už baltąjį kiškį. 4-6,5 kg svorio žvėrelis, ilgomis ausimis, pilkai rusva ar juosva viršutine kūno puse, ruda krūtine ir kojomis, baltu pilvu. Uodega trumpa, viršutinė pusė juoda, apatinė - balta. Ausų viršūnėlės juodos. Priekinės kojos trumpos, penkiapirštės, užpakalinės - ilgos, keturpirštės, ilgomis pėdomis. Pirštai laisvi, plaukuoti, su aštriais nagais. Plaukai tankūs, švelnūs, žiemą labai gausu vilnaplaukių. Akuotplaukiai truputį ilgesni. Patinai panašūs į pateles.
Biologija  Pateiktys   (24 psl., 6,73 MB)
Vanduo ir žmogus
2010-09-07
Vanduo iš cheminės pusės. Vanduo iš geografinės pusės. Vanduo iš biologinės pusės. Vanduo iš medicininės pusės. Mikrobiologinių ir cheminių teršalų poveikis sveikatai. Vandens tarša. Lietuvos vandenys. Būklė. Upės. Ežerai. Kuršių marios ir Baltijos jūra. Požeminiai vandenys. Vandens ciklas.
Aplinka  Referatai   (17 psl., 30,29 kB)
Automobilius pradėta gaminti maždaug prieš 110 metų. Tiesa, pirmasis garinis triratis pasirodė šiek tiek anksčiau – 1769 metais. Skystu kuru varomi ratuoti savaeigiai ne tik pakeitė arklių traukiamas karietas bei vežimus, bet ir daugumos žmonių gyvenseną – padidėjo mobilumas, daugiau buvo pervežama krovinių, vyrai ir moterys patyrė vairavimo malonumą, sukurtas auto- ir motosportas.
Logistika  Diplominiai darbai   (45 psl., 59,73 kB)
Sidabras
2010-02-02
Sidabras – cheminis periodinės elementų lentelės elementas, žymimas Ag (lot. argentum), eilės numeris 47, brangusis metalas. Tai sidabriškai baltas, lankstus ir minkštas (kiek kietesnis už auksą) metalas. Sidabro elektrinis laidumas didesnis už vario, bet kaip laidininkas nenaudotas dėl kainos.
Chemija  Pagalbinė medžiaga   (12 psl., 1,7 MB)
Anksčiau buvo manoma, jog funkciškai orientuotas projektavimas yra pasenęs ir gali būti pakeistas objektiškai orientuotu projektavimu. Tačiau daug organizacijų buvo išvystę metodus ir standartus, pagrįstus funkcine dekompozicija ir todėl nenorėjo pripažinti palankumo objektiškai orientuotam projektavimui. Naudojant funkcinį metodą buvo sukurta daug sistemų. Todėl funkcinis projektavimas yra ir bus plačiai praktikuojamas. Šio metodo strategija leidžia išskaidyti sistemą į aibę sąveikaujančių funkcijų su centralizuota sistemos būsena, paskirstyta šių funkcijų. Funkciškai orientuotas projektavimas paslepia algoritmo detales funkcijose, bet sistemos būsenos informacija nėra paslėpta. Tai gali sukelti problemų, nes funkcija gali pakeisti būseną taip, kaip nesitiki kitos funkcijos. Funkcijų pakeitimai ir tai, kaip jos naudoja sistemos būseną, gali sukelti nenumatytą sąveiką su kitom funkcijom. Todól funkcinio projektavimo būdas yra labiausiai vykęs, kuomet sistemos būsenos apimtis yra minimizuota ir informacijos paskirstymas yra apibrėžtas. Duomenų srauto diagramos Duomenų srauto diagramos rodo kaip įvesti duomenys yra transformuojami rezultatų išvedimui per eilę funkcinių transformacijų. Diagramos - intuityvus ir naudingas kelias aprašant sistemą, bet jos nesuprantamos be papildomo mokymosi. Pirmas funkciškai orientuoto projektavimo etapas turėtų būti sukurti, vystyti sistemos srautų diagramas. Šios diagramos paprastai neįtraukia valdymo informacijos, bet jos gali dokumentuoti duomenų transformacijas. Duomenų srauto diagramos yra projektavimo metodų sudedamoji dalis ir CASE priemonės paprastai palaiko duomenų srauto diagramų kūrimą. Žymėjimai, naudojami skirtinguose metoduose, yra panašūs ir perėjimas nuo vieno žymėjimo prie kito yra tiesioginis. Čia naudojama žymėjimų sistema buvo pasirinkta todėl, kad ji tinka piešti naudojant PC diagramų redagavimo sistemą. Šioje žymėjimo sistemoje naudojami simboliai reiškia : 1.Apvalių kampų stačiakampiai. Jie vaizduoja transformacijas, kuriose įvedimo duomenų srautas yra transformuojamas į išvedimo. Transformacija yra anotuojama ( užrašoma ) apibrėžimo vardu. 2.Stačiakampiai. Vaizduoja duomenų talpą ( dydį ). Užrašomi apibrėžimo vardu. 3.Apskritimai. Vaizduoja vartotojo santykį su sistema. Šie santykiai gali palaikyti įvedimą ar gauti išvedimą. 4.Rodyklės. Rodo duomenų srauto kryptį. Jos gauna vardą, apibrėžiantį duomenis, kurie "teka" nurodyta kryptimi. 5.Raktiniai žodżiai 'and' ir 'or'. Čia jie turi įprastines reikšmes, kaip ir loginėse išraiškose. Jie naudojami sujungti duomenų srautus, kuomet daugiau nei vienas srautas gali būti įvestas ar išvestas iš transformacijos. 6.Lanko simbolis, jungiantis duomenų srautus. Jis naudojamas tik konjunkcijoje su 'and' ir 'or', ir naudojami indikuoti skliaustus. Iš esmės 'and' turi prioritetą prieš 'or', bet tai gali būti pakeista, sujungiant tinkamus duomenų srautus. Žymėjimo sistema iliustruota paveiksle 12.3. Ji aprašo ataskaitų generatoriaus sistemos, naudojamos konjunkcijoje kartu su projektavimo redaktoriumi, loginį projektavimą. Ataskaitų generatorius priima projektavimą ir pagamina ataskaitą apie kiekvieną objektą, naudojamą projektavime. Vartotojas įveda projekto vardą ir ataskaitų generatorius randa visus vardus, naudojamus šiame projektavime. Duomenų žodynas suteikia informacijos apie projektavimo objektus ir daromas ataskaitas. Informacija ataskaitoje yra pateikiama pagal tai, kuris iš dviejų objektų yra mazgo tipo ar jungties tipo. Duomenų srautų diagramų nauda yra ta, kad jos rodo transformacijas, nedarydamos prielaidų kaip tos transformacijos realizuotos. Pvz., taip apibrėžta sistema gali būti realizuota kaip atskira programa, naudojanti programinius modulius tam, kad realizuoti kiekvienątransformaciją. Ir atvirkščiai, tai gali būti realizuota kaip skaičius susisiekiančių uždavinių arba, galbūt, realizacija gali būti šių metodų sujungimas. 2.Funkcinis projektavimas Funkcinis projektavimas yra programų sudarymo metodas, kai programasusideda iš aibės tarpusavyje bendaujančių vienetų, kurie turi tiksliai apibrėžtą funkciją. Funkcujos turi lokalų būvį, bet padlintas sistemos būvis yra centralizuotas ir prieinamas visoms funkcijoms. Funkcinis projektavimas buvo naudojamas nuo tada, kai prasidėjo programavimas. Bet tik šešto dešimtmečio gale septinto dešimtmečio pradžioje išgarsėjo. Daugelis laikraščių ir knygų, iš kurių labiausiai žinomos Virto (1971, 1976) Buvo publikuota būtent šio metodo pagrindu. Buvo teigta, kad funkcinis projektavimas yra pasenęs ir turi būti pakeistas objektiškai orientuoto priėjimo. Tačiau daug organizacijų išvystė standartus, pagrįstus funkcine dekompozicija. Daug projektavimo priemonių ir susiję CASE įrankiai yra funkciškai orientuoti. Todėl funkcinis projektavimas turi būti pačiai taikomas. Funkicinis projektavimas naudoja duomenų srautų diagramas, kurios aprašo loginių duomenų apdorojimą, struktūrų diagramų, kurios parodo programinės įrangos struktūrą ir PDL aprašymą, kuris aprašo detaliai projektavimą. Duomenų srautų žymėjimo sistema buvo modifikuota, kad padaryti ją labiau tinkama automatizuoto diagramų sudarymo sistemos naudojimui, ir yra naudojama truputi skirtinga struktūros diagramų forma, kuri neįtraukia valdymo informacijos. Funkcinio programų projektavimo strategija pasikliauna sistemos dekompozicija į aibę iteraktyvių funkcijų.Funkcijos galipalaikyti lokalios būsenos informaciją, bet tik jų vykdymo metu. Funkcinis projektavimas paslepia algoritmo detales savyje, bet sistemos būsenos informacija nėra slepiama. Tai gali sukelti problemų, nes funkcija gali pakeisti būvi tokiu būdu, kokio kitos funkcijos nenumato. Pakeitimai funkcijoje ir būdas, kuruo jos naudoja sistemos būseną gali sukelti nenumatytų sąveikų su kitomis funkcijomis. Funkcinis projektavimas vis dėl to yra sekmingiausias kai sistemos būvio informacijos gausa yra minimizuojama ir informacijos dalijimas yra apibrėžtas. Kai kurios sistemos, kurios reaguoja į pavienius poveikius ar duomenų įvedimą ir nereaguoja į įvedimo istoriją, yra funkciškai orientuotos. Geras tokios sistemos pavyzdys yra ATM sistema. Šiame projektavime funkijos gali būti identifikuojamos taip, kad įvykdytų sisteminius veiksmus. Sistemos būvis yra minimalus. Operacijos yra nepriklausomos ir nereaguoja į anksesnes vartotojo užklausas. Iš tikrųjų objektiškai orientuotas projektavimas negali labai skirtis nuo šio (išskyrus sintaksiškai) ir objektiškai orientuotas priėjimas tursbūt nesibaigia vien projektavimu Duomenų srautų diagramos Duomenų srautų diagramos parodo kaip įvedami duomenys yra transormuojami į išvadamus rezultatus per eilę funkcinių transformacijų. Jos yra naudingas ir intuitvus sistemos aptanavimo būdas, be to diagramos suprantamos be specialių žinių. Pirma funkcinio projektavimo stadija turi sukurti sisteminių duomenų srautų diagramas. Šios diagramos neturi normaliai įtraukti valdymo informacijos, bet turi dokumentuoti duomenų transformacijas. Duomenų srautų diagramos yra sudėtinė projektavimo metodų ir CASE priemonių dalis ir dažniausiai palaiko duomenų srautų diagramų kurimą Pažymėjimai naudojami skirtinguose metoduose yra panašūs ir lengai transformuojami nuo viemų pažymėjimų prie kitų. Duomenų srautų diagramų pranašumas yra tas, kad jos parodo transformacijas, bet nerodo, kaip transformacijos įgyvendinamos. Pavyzdžiui, sistema, parašyta šiuo budu gali būti įgyvendinama kaip viena programa, naudojant programų vienetus, įgyvendinančius kiekvieną transformaciją. Kaip alternatyva gali būti ygyvendintos keliois komunikuojančios užduotys arba gali būti realizuota kaip šių metodų junginys. Struktūrinės diagramos Struktūrinės diagramos yra grafinės priemonės, parodančios sistemos komponentų struktūros hierarchiją. Jos parodo, kad duomenų srauto elementų diagramos gali būti realizuotos kaip programų dalių hierarchija. Struktūrinės diagramos gali būti naudojamos vaizdininiam programų atvaizdavimui su svarbia informacija. Struktūrinės diagramos čia naudojamos tik statiniam projektavimo organizavimo atvaizadavimui. Struktūrinėje diagramoje funkcinis elementas vaizduojamas kaip stačiakampis. Struktūrinėje diagramoje hierarchija vaizduojama sujungiant stačiakampius linijomis. Įėjimai ir išėjimai į komponentes vaizduojami naudojant rodykles. Rodyklė, įeinanti į figūrą, imituoja įėjimą, kitas linijos galas imituoja išėjimą. Duomenų saugykla vaizduojama kaip stačiakampis užapvalintais kampais, o vartotojo įėjimai kaip apskritimai. Kad sutaupyti diagramos vietą, kai kurie įėjimai ir išėjimai lieka nepažymėti. Problema, kuri kyla programinės įrangos inžinieriui, yra kaip gauti geriausios struktūros diagramą iš duomenų srauto digramos. Kad iliustruoti tai, išnagrinėkime tas programinės įrangos sistemas, kurios gali būti šiuolaikinės aviacijos dalimi. Struktūrinės diagramos gavimas Ankstesniame skyrelyje buvo nagrinėta, kaip struktūrinės diagramos yra sudaromos iš duomenų srautų diagramų, tačiau nieko nebuvo pasakyta apie tai, kaip geriau tai pdaryti. Projektuotojai turi suprojektuoti objektą, kuriame programos blokai yra aukštame lygyje surišti viduj ir žemame lygyje susieti su kitais blokais. Toks apibūdinimas gali būti supaprastintas, jeigu blokai turi ryšius su vienu iš keturių duomenų tipų: 1. Įėjimas. Šis programos blokas atsakingas už duomenų priėmimą iš žemesnio struktūrinės diagramos lygio, modifikavimą ir perdavimą į aukštesnį lygį. 2. Išėjimas. Šis blokas gauna duomenis iš aukštesnio lygio ir perduoda juos į žemesnį lygį. 3. Transformacija. Programos blokas gauna duomenis iš aukštesnio lygio, keičia juos ir grąžina juos atgal. 4. Valdymas. Blokas kontroliuoja ir valdo kitus blokus. Pirmas žingsnis duomenų srauto diagramų konvertavimo į strukūrinę diagramą yra identifikuoti aukščiausius įėjimo ir išėjimo blokus. Šis žingsnis neįtraukia visų transformacijų, tačiau įtrauktosios vadinamos pagrindinėmis. Aukščiausio lygio įėjimo ir išėjimo blokų nustatymas priklauso nuo projektuotojų patyrimo. Vienintelis galimas būdas išspręsti šią užduotį yra trasuoti įėjimus tol, kol bus rasta tokia transformacija, kurios išėjimas nepriklauso nuo įėjimo. Procesai, kurie validuoja įėjimus ar prideda jiems informacijos dar nėra vadinami pagrindiniais transformuotojais; jais vadinami tokie procesai, kurie rūšiuoja ar filtruoja duomenis. Panašiais kriterijais remiantis nustatomos ir aukščiausio lygio išėjimo transformacijos. Pirmas struktūrinės diagramos projektavimo lygis sudaromas įėjimo ir išėjimo vienetus pažymint atskirais apskritimais ir kiekvieną atskirą pagrindinę transformaciją pažymint kaip atskirą stačiakampį. Stačiakampis, esantis struktūrinės diagramos viršuje vadinamas koordinuojamu bloku. Sudarymo procesas turi būti vykdomas tol, kol kol bus atvaizduoti visi duomenų srautų judėjimai. Kiekvienas mazgas gerai suprojektuotoje struktūrinėje diagramoje turi turėti nuo dviejų iki septynių sau pavaldžių mazgų. Jei mazgas turi tik vieną sau pavaldų mazgą, vadinasi to mazgo programos blokas turės žemo lygio susietumą su kitais blokais. Jei mazgas turi daug sau pavaldžų mazgų, vadinasi programos projektavimas buvo vystomas žemo lygio fazėje. Informacija, esanti duomenų srautų diagramose, paprastai naudojama projektuojant struktūrines diagramas, tačiau kiti į struktūrinę diagramą įtraukiami komponentai, kurių nebuvo duomenų srauto diagramoje, nėra tiesiogiai susiję su duomenų transformacija. Struktūrinių diagramų sudarymas yra dviejų lygių procesas. Projektuojant duomenų srautus, apibrėžiamos pirminės projektavimo aprašymo struktūros, į kurias įeina valdymo informacija ir funkcijos. Struktūrinės diagramos turi būti modifikuojamos, įtraukiant papildomus valdymo komponentus. Pagrindinės išvados: * Duomenų srauto diagramos yra priemonė dokumentuoti sistemos duomenų srautus. * Struktūrinės diagramos yra vienas iš būdų atvaizduoti sistemos hierarchinę organizaciją. Svarbu, kad kiekvienas funkcinis mazgas struktūroje turėtų nuo dviejų iki septynių sau pavaldžių mazgų. Duomenų žodynai Duomenų žodynai yra labai naudingi ne tik tai tam, kad palaikyti sistemos specifikacijas, bet ir tiek pat naudingi projektavimo procese. Kiekviena nustatyta esybė diagramoje turi turėti duomenų žodyno įėjimą, duodantį informaciją apie jo tipą, jo funkcijas ir, galbūt, logišką išaiškinimą jo priklausymui. Tai kartais yra vadinama minispekuliacija, pasitenkinant trumpu komponentų f-jos aprašymu. Duomenų žodyno įėjimas turėtų būti komponento tekstinis aprašymas arba turėtų būti labiau išsamesnis aprašymas, išdėstytas projektavimo aprašymo kalba. Duomenų žodynai yra atitinkamas būdas sujungti aprašomojo ir diagraminio projektavimo aprašymus. Ši schema parodo išnykstantį langą, aprašydama pažymėtą transformaciją slenkančių duomenų schemoje. Kai kurie CASE įrenginių išdėstymai aprūpina automatinį sujungimą tarp slenkančių duomenų schemos ir doumenų žodyno. Konkuruojančių sistemų projektavimas Kaip ir objektinis projektavimas, f-nis panašumas projektavimui neužkerta kelio šio projektavimo, kaip eilės lygiagrečiai sąveikaujančių procesų, realizavimui. Iš tikrųjų, slenkančių duomenų diagramos aiškiai pašalina valdymo informaciją ir standartinė įgyvendinimo technika realaus laiko sistemoms yra paimti slenkančių duomenų diagramą ir įvykdyti jos transformacijas kaip skirtingus procesus. Vietinės informacijos grąžinimo sistema galėtų būti projektuojama naudojant konkuruojančius procesus. Komandos įvedimas, vykdymas, būsenos ataskaita-visosyra vykdomos kaip atskiros užduotys. Get_command užduotis tęsiamai traukia pelę ir kai komandos plotas yra pažymėtas, pradedamas komandos vykdymo procesas. Taip pat komandos vykdymo procesas pateikia būsenos pranešimus, kurie yra perdirbti išėjimo užduočių. Darbo aplinkos sukūrimas taip pat vykdomas kaip lygiagreti užduotis ir autorius yra priimtas ar nušalintas priklausomai nuo to ar kursorius yra darbo lange, ar ne. Šis pavyzdys iliustruoja, kad projektavimo lygiagretumas dažnai yra pasirinkimo teisė, prieinama projektuotojui. Kai kurie sistemų tipai yra paprastai vykdomi kaip lygiagrečių procesų rinkiniai kartu su procesu, susijusiu su kiekvienu sistemos techninės įrangos įrenginiu. Kaip bebūtų, problemomis dažnai tampa ir lygiagretaus, ir nuoseklaus projektavimo sprendimai, o skuboti projektavimo sprendimai turi būti anuliuojami.
Informatika  Kursiniai darbai   (44,11 kB)
Projektavimas
2010-01-19
Anksčiau buvo manoma, jog funkciškai orientuotas projektavimas yra pasenęs ir gali būti pakeistas objektiškai orientuotu projektavimu. Tačiau daug organizacijų buvo išvystę metodus ir standartus, pagrįstus funkcine dekompozicija ir todėl nenorėjo pripažinti palankumo objektiškai orientuotam projektavimui. Naudojant funkcinį metodą buvo sukurta daug sistemų. Todėl funkcinis projektavimas yra ir bus plačiai praktikuojamas. Šio metodo strategija leidžia išskaidyti sistemą į aibę sąveikaujančių funkcijų su centralizuota sistemos būsena, paskirstyta šių funkcijų. Funkciškai orientuotas projektavimas paslepia algoritmo detales funkcijose, bet sistemos būsenos informacija nėra paslėpta. Tai gali sukelti problemų, nes funkcija gali pakeisti būseną taip, kaip nesitiki kitos funkcijos. Funkcijų pakeitimai ir tai, kaip jos naudoja sistemos būseną, gali sukelti nenumatytą sąveiką su kitom funkcijom. Todól funkcinio projektavimo būdas yra labiausiai vykęs, kuomet sistemos būsenos apimtis yra minimizuota ir informacijos paskirstymas yra apibrėžtas. Duomenų srauto diagramos Duomenų srauto diagramos rodo kaip įvesti duomenys yra transformuojami rezultatų išvedimui per eilę funkcinių transformacijų. Diagramos - intuityvus ir naudingas kelias aprašant sistemą, bet jos nesuprantamos be papildomo mokymosi. Pirmas funkciškai orientuoto projektavimo etapas turėtų būti sukurti, vystyti sistemos srautų diagramas. Šios diagramos paprastai neįtraukia valdymo informacijos, bet jos gali dokumentuoti duomenų transformacijas. Duomenų srauto diagramos yra projektavimo metodų sudedamoji dalis ir CASE priemonės paprastai palaiko duomenų srauto diagramų kūrimą. Žymėjimai, naudojami skirtinguose metoduose, yra panašūs ir perėjimas nuo vieno žymėjimo prie kito yra tiesioginis. Čia naudojama žymėjimų sistema buvo pasirinkta todėl, kad ji tinka piešti naudojant PC diagramų redagavimo sistemą. Šioje žymėjimo sistemoje naudojami simboliai reiškia : 1.Apvalių kampų stačiakampiai. Jie vaizduoja transformacijas, kuriose įvedimo duomenų srautas yra transformuojamas į išvedimo. Transformacija yra anotuojama ( užrašoma ) apibrėžimo vardu. 2.Stačiakampiai. Vaizduoja duomenų talpą ( dydį ). Užrašomi apibrėžimo vardu. 3.Apskritimai. Vaizduoja vartotojo santykį su sistema. Šie santykiai gali palaikyti įvedimą ar gauti išvedimą. 4.Rodyklės. Rodo duomenų srauto kryptį. Jos gauna vardą, apibrėžiantį duomenis, kurie "teka" nurodyta kryptimi. 5.Raktiniai žodżiai 'and' ir 'or'. Čia jie turi įprastines reikšmes, kaip ir loginėse išraiškose. Jie naudojami sujungti duomenų srautus, kuomet daugiau nei vienas srautas gali būti įvestas ar išvestas iš transformacijos. 6.Lanko simbolis, jungiantis duomenų srautus. Jis naudojamas tik konjunkcijoje su 'and' ir 'or', ir naudojami indikuoti skliaustus. Iš esmės 'and' turi prioritetą prieš 'or', bet tai gali būti pakeista, sujungiant tinkamus duomenų srautus. Žymėjimo sistema iliustruota paveiksle 12.3. Ji aprašo ataskaitų generatoriaus sistemos, naudojamos konjunkcijoje kartu su projektavimo redaktoriumi, loginį projektavimą. Ataskaitų generatorius priima projektavimą ir pagamina ataskaitą apie kiekvieną objektą, naudojamą projektavime. Vartotojas įveda projekto vardą ir ataskaitų generatorius randa visus vardus, naudojamus šiame projektavime. Duomenų žodynas suteikia informacijos apie projektavimo objektus ir daromas ataskaitas. Informacija ataskaitoje yra pateikiama pagal tai, kuris iš dviejų objektų yra mazgo tipo ar jungties tipo. Duomenų srautų diagramų nauda yra ta, kad jos rodo transformacijas, nedarydamos prielaidų kaip tos transformacijos realizuotos. Pvz., taip apibrėžta sistema gali būti realizuota kaip atskira programa, naudojanti programinius modulius tam, kad realizuoti kiekvienątransformaciją. Ir atvirkščiai, tai gali būti realizuota kaip skaičius susisiekiančių uždavinių arba, galbūt, realizacija gali būti šių metodų sujungimas. 2.Funkcinis projektavimas Funkcinis projektavimas yra programų sudarymo metodas, kai programasusideda iš aibės tarpusavyje bendaujančių vienetų, kurie turi tiksliai apibrėžtą funkciją. Funkcujos turi lokalų būvį, bet padlintas sistemos būvis yra centralizuotas ir prieinamas visoms funkcijoms. Funkcinis projektavimas buvo naudojamas nuo tada, kai prasidėjo programavimas. Bet tik šešto dešimtmečio gale septinto dešimtmečio pradžioje išgarsėjo. Daugelis laikraščių ir knygų, iš kurių labiausiai žinomos Virto (1971, 1976) Buvo publikuota būtent šio metodo pagrindu. Buvo teigta, kad funkcinis projektavimas yra pasenęs ir turi būti pakeistas objektiškai orientuoto priėjimo. Tačiau daug organizacijų išvystė standartus, pagrįstus funkcine dekompozicija. Daug projektavimo priemonių ir susiję CASE įrankiai yra funkciškai orientuoti. Todėl funkcinis projektavimas turi būti pačiai taikomas. Funkicinis projektavimas naudoja duomenų srautų diagramas, kurios aprašo loginių duomenų apdorojimą, struktūrų diagramų, kurios parodo programinės įrangos struktūrą ir PDL aprašymą, kuris aprašo detaliai projektavimą. Duomenų srautų žymėjimo sistema buvo modifikuota, kad padaryti ją labiau tinkama automatizuoto diagramų sudarymo sistemos naudojimui, ir yra naudojama truputi skirtinga struktūros diagramų forma, kuri neįtraukia valdymo informacijos. Funkcinio programų projektavimo strategija pasikliauna sistemos dekompozicija į aibę iteraktyvių funkcijų.Funkcijos galipalaikyti lokalios būsenos informaciją, bet tik jų vykdymo metu. Funkcinis projektavimas paslepia algoritmo detales savyje, bet sistemos būsenos informacija nėra slepiama. Tai gali sukelti problemų, nes funkcija gali pakeisti būvi tokiu būdu, kokio kitos funkcijos nenumato. Pakeitimai funkcijoje ir būdas, kuruo jos naudoja sistemos būseną gali sukelti nenumatytų sąveikų su kitomis funkcijomis. Funkcinis projektavimas vis dėl to yra sekmingiausias kai sistemos būvio informacijos gausa yra minimizuojama ir informacijos dalijimas yra apibrėžtas. Kai kurios sistemos, kurios reaguoja į pavienius poveikius ar duomenų įvedimą ir nereaguoja į įvedimo istoriją, yra funkciškai orientuotos. Geras tokios sistemos pavyzdys yra ATM sistema. Šiame projektavime funkijos gali būti identifikuojamos taip, kad įvykdytų sisteminius veiksmus. Sistemos būvis yra minimalus. Operacijos yra nepriklausomos ir nereaguoja į anksesnes vartotojo užklausas. Iš tikrųjų objektiškai orientuotas projektavimas negali labai skirtis nuo šio (išskyrus sintaksiškai) ir objektiškai orientuotas priėjimas tursbūt nesibaigia vien projektavimu Duomenų srautų diagramos Duomenų srautų diagramos parodo kaip įvedami duomenys yra transormuojami į išvadamus rezultatus per eilę funkcinių transformacijų. Jos yra naudingas ir intuitvus sistemos aptanavimo būdas, be to diagramos suprantamos be specialių žinių. Pirma funkcinio projektavimo stadija turi sukurti sisteminių duomenų srautų diagramas. Šios diagramos neturi normaliai įtraukti valdymo informacijos, bet turi dokumentuoti duomenų transformacijas. Duomenų srautų diagramos yra sudėtinė projektavimo metodų ir CASE priemonių dalis ir dažniausiai palaiko duomenų srautų diagramų kurimą Pažymėjimai naudojami skirtinguose metoduose yra panašūs ir lengai transformuojami nuo viemų pažymėjimų prie kitų. Duomenų srautų diagramų pranašumas yra tas, kad jos parodo transformacijas, bet nerodo, kaip transformacijos įgyvendinamos. Pavyzdžiui, sistema, parašyta šiuo budu gali būti įgyvendinama kaip viena programa, naudojant programų vienetus, įgyvendinančius kiekvieną transformaciją. Kaip alternatyva gali būti ygyvendintos keliois komunikuojančios užduotys arba gali būti realizuota kaip šių metodų junginys. Struktūrinės diagramos Struktūrinės diagramos yra grafinės priemonės, parodančios sistemos komponentų struktūros hierarchiją. Jos parodo, kad duomenų srauto elementų diagramos gali būti realizuotos kaip programų dalių hierarchija. Struktūrinės diagramos gali būti naudojamos vaizdininiam programų atvaizdavimui su svarbia informacija. Struktūrinės diagramos čia naudojamos tik statiniam projektavimo organizavimo atvaizadavimui. Struktūrinėje diagramoje funkcinis elementas vaizduojamas kaip stačiakampis. Struktūrinėje diagramoje hierarchija vaizduojama sujungiant stačiakampius linijomis. Įėjimai ir išėjimai į komponentes vaizduojami naudojant rodykles. Rodyklė, įeinanti į figūrą, imituoja įėjimą, kitas linijos galas imituoja išėjimą. Duomenų saugykla vaizduojama kaip stačiakampis užapvalintais kampais, o vartotojo įėjimai kaip apskritimai. Kad sutaupyti diagramos vietą, kai kurie įėjimai ir išėjimai lieka nepažymėti. Problema, kuri kyla programinės įrangos inžinieriui, yra kaip gauti geriausios struktūros diagramą iš duomenų srauto digramos. Kad iliustruoti tai, išnagrinėkime tas programinės įrangos sistemas, kurios gali būti šiuolaikinės aviacijos dalimi. Struktūrinės diagramos gavimas Ankstesniame skyrelyje buvo nagrinėta, kaip struktūrinės diagramos yra sudaromos iš duomenų srautų diagramų, tačiau nieko nebuvo pasakyta apie tai, kaip geriau tai pdaryti. Projektuotojai turi suprojektuoti objektą, kuriame programos blokai yra aukštame lygyje surišti viduj ir žemame lygyje susieti su kitais blokais. Toks apibūdinimas gali būti supaprastintas, jeigu blokai turi ryšius su vienu iš keturių duomenų tipų: 1. Įėjimas. Šis programos blokas atsakingas už duomenų priėmimą iš žemesnio struktūrinės diagramos lygio, modifikavimą ir perdavimą į aukštesnį lygį. 2. Išėjimas. Šis blokas gauna duomenis iš aukštesnio lygio ir perduoda juos į žemesnį lygį. 3. Transformacija. Programos blokas gauna duomenis iš aukštesnio lygio, keičia juos ir grąžina juos atgal. 4. Valdymas. Blokas kontroliuoja ir valdo kitus blokus. Pirmas žingsnis duomenų srauto diagramų konvertavimo į strukūrinę diagramą yra identifikuoti aukščiausius įėjimo ir išėjimo blokus. Šis žingsnis neįtraukia visų transformacijų, tačiau įtrauktosios vadinamos pagrindinėmis. Aukščiausio lygio įėjimo ir išėjimo blokų nustatymas priklauso nuo projektuotojų patyrimo. Vienintelis galimas būdas išspręsti šią užduotį yra trasuoti įėjimus tol, kol bus rasta tokia transformacija, kurios išėjimas nepriklauso nuo įėjimo. Procesai, kurie validuoja įėjimus ar prideda jiems informacijos dar nėra vadinami pagrindiniais transformuotojais; jais vadinami tokie procesai, kurie rūšiuoja ar filtruoja duomenis. Panašiais kriterijais remiantis nustatomos ir aukščiausio lygio išėjimo transformacijos. Pirmas struktūrinės diagramos projektavimo lygis sudaromas įėjimo ir išėjimo vienetus pažymint atskirais apskritimais ir kiekvieną atskirą pagrindinę transformaciją pažymint kaip atskirą stačiakampį. Stačiakampis, esantis struktūrinės diagramos viršuje vadinamas koordinuojamu bloku. Sudarymo procesas turi būti vykdomas tol, kol kol bus atvaizduoti visi duomenų srautų judėjimai. Kiekvienas mazgas gerai suprojektuotoje struktūrinėje diagramoje turi turėti nuo dviejų iki septynių sau pavaldžių mazgų. Jei mazgas turi tik vieną sau pavaldų mazgą, vadinasi to mazgo programos blokas turės žemo lygio susietumą su kitais blokais. Jei mazgas turi daug sau pavaldžų mazgų, vadinasi programos projektavimas buvo vystomas žemo lygio fazėje. Informacija, esanti duomenų srautų diagramose, paprastai naudojama projektuojant struktūrines diagramas, tačiau kiti į struktūrinę diagramą įtraukiami komponentai, kurių nebuvo duomenų srauto diagramoje, nėra tiesiogiai susiję su duomenų transformacija. Struktūrinių diagramų sudarymas yra dviejų lygių procesas. Projektuojant duomenų srautus, apibrėžiamos pirminės projektavimo aprašymo struktūros, į kurias įeina valdymo informacija ir funkcijos. Struktūrinės diagramos turi būti modifikuojamos, įtraukiant papildomus valdymo komponentus. Pagrindinės išvados: * Duomenų srauto diagramos yra priemonė dokumentuoti sistemos duomenų srautus. * Struktūrinės diagramos yra vienas iš būdų atvaizduoti sistemos hierarchinę organizaciją. Svarbu, kad kiekvienas funkcinis mazgas struktūroje turėtų nuo dviejų iki septynių sau pavaldžių mazgų. Duomenų žodynai Duomenų žodynai yra labai naudingi ne tik tai tam, kad palaikyti sistemos specifikacijas, bet ir tiek pat naudingi projektavimo procese. Kiekviena nustatyta esybė diagramoje turi turėti duomenų žodyno įėjimą, duodantį informaciją apie jo tipą, jo funkcijas ir, galbūt, logišką išaiškinimą jo priklausymui. Tai kartais yra vadinama minispekuliacija, pasitenkinant trumpu komponentų f-jos aprašymu. Duomenų žodyno įėjimas turėtų būti komponento tekstinis aprašymas arba turėtų būti labiau išsamesnis aprašymas, išdėstytas projektavimo aprašymo kalba. Duomenų žodynai yra atitinkamas būdas sujungti aprašomojo ir diagraminio projektavimo aprašymus. Ši schema parodo išnykstantį langą, aprašydama pažymėtą transformaciją slenkančių duomenų schemoje. Kai kurie CASE įrenginių išdėstymai aprūpina automatinį sujungimą tarp slenkančių duomenų schemos ir doumenų žodyno. Konkuruojančių sistemų projektavimas Kaip ir objektinis projektavimas, f-nis panašumas projektavimui neužkerta kelio šio projektavimo, kaip eilės lygiagrečiai sąveikaujančių procesų, realizavimui. Iš tikrųjų, slenkančių duomenų diagramos aiškiai pašalina valdymo informaciją ir standartinė įgyvendinimo technika realaus laiko sistemoms yra paimti slenkančių duomenų diagramą ir įvykdyti jos transformacijas kaip skirtingus procesus. Vietinės informacijos grąžinimo sistema galėtų būti projektuojama naudojant konkuruojančius procesus. Komandos įvedimas, vykdymas, būsenos ataskaita-visosyra vykdomos kaip atskiros užduotys. Get_command užduotis tęsiamai traukia pelę ir kai komandos plotas yra pažymėtas, pradedamas komandos vykdymo procesas. Taip pat komandos vykdymo procesas pateikia būsenos pranešimus, kurie yra perdirbti išėjimo užduočių. Darbo aplinkos sukūrimas taip pat vykdomas kaip lygiagreti užduotis ir autorius yra priimtas ar nušalintas priklausomai nuo to ar kursorius yra darbo lange, ar ne. Šis pavyzdys iliustruoja, kad projektavimo lygiagretumas dažnai yra pasirinkimo teisė, prieinama projektuotojui. Kai kurie sistemų tipai yra paprastai vykdomi kaip lygiagrečių procesų rinkiniai kartu su procesu, susijusiu su kiekvienu sistemos techninės įrangos įrenginiu. Kaip bebūtų, problemomis dažnai tampa ir lygiagretaus, ir nuoseklaus projektavimo sprendimai, o skuboti projektavimo sprendimai turi būti anuliuojami.
Informatika  Konspektai   (9,24 kB)
Tai ypač gera dirva kompiuterio virusams. Todėl mokyklose, įvairiose įstaigose užkratas yra kasdieninis reiškinys. Toks aplaidumas gali baigtis labai liūdnai jei pasitaikys pavojingo viruso egzempliorius. Taigi ne tik nuo techninių ir programinių priemonių priklauso kompiuterio saugumas, o ir nuo pačių vartotojų, požiūrio ir nuostatų . 2. Virusų veikimo principai, rūšiavimas ir klasifikacija. Virusų, skirtų tik lengvai trikdyti kompiuterio darbą požymiai ir padariniai yra lengvai pastebimi, t.y. įvairūs vaizdai ar garsai, užrašai ar pan. Tokie virusai nedaro daug žalos. Kitų rimtesnių virusų dažniausiai pasitaikantys požymiai yra: pasikeičia command. com ir kitų sisteminių bylų dydis bei data; lėčiau nei įprasta programa įrašoma į atmintį, neaiškus kreipimasis į diską; neveikia kai kurios rezidentinės programos bei tvarkyklės; anksčiau normaliai dirbusi programa nustoja veikti; staiga sumažėja tiesioginės kreipties atmintis (RAM) dydis bei disko talpa ir t. t. Visus virusus galima suskirstyti į kelias grupes pagal šiuos požymius: veikimo terpę; veikimo terpės užkrėtimo būdą; poveikio pavojingumą Pagal pirmąjį požymį virusai dar skirstomi į tinklo, bylų ir įkėlos. Tinklo virusai plinta kompiuterių tinklais, bylų - įsiterpia į vykdomas bylas, įkėlos - į pirmąjį diskelio ar kietojo disko sektorių. Galimi mišrūs variantai, be to, tinklais gali plisti visų tipų virusai. Pagal veikimo terpės užkrėtimo būdą virusai skirstomi į rezidentinius ir nerezidentinius. Rezidentinis virusas užkrėtimo metu tiesioginės kreipties atmintyje palieka savo rezidentinę dalį, kuri po to perima operacinės sistemos kreipimąsi į užkrečiamus objektus ir įsiterpia į juos. Rezidentiniai virusai yra kompiuterio atmintyje ir lieka aktyvūs, kol kompiuteris išjungiamas. Nerezidentinis virusas neužkrečia kompiuterio atminties ir yra aktyvus tik tam tikrą laiką. Pagal padarytą žalą virusai būna: Neveiksmingi, nedarantys įtakos kompiuterio darbui, tačiau sumažinantys jo atmintį dėl viruso plitimo; nepavojingi, tačiau sumažinantys atmintį bei pasireiškiantys grafiniais, garsiniais ar kitokiais efektais; pavojingi, trikdantys kompiuterio darbą; labai pavojingi, naikinantys programas, duomenis, kompiuterio darbui reikalingą informaciją, įrašytą į sisteminės atminties sritį. 3. Apsauga nuo virusų Tam kad apsisaugotumėte nuo virusų: įsigykite naujausias antivirusines programas ir periodiškai jas atnaujinkite (update). periodiškai tikrinkite diskus ir darbe naudojamas disketes naujausiomis antivirusų programomis, nes naujų virusų atsiranda kasdien; originalias disketes laikykite uždaras (write-protected) informacijai įrašyti. Tuomet virusas negalės patekti į jose esančias programas ir visuomet galėsite užkrėstąją programą pakeisti gera; periodiškai perrašykite į disketes, magnetooptinius diskelius ar kompaktinius diskus svarbius duomenų failus tam, kad galėtumėte juos pakeisti gerais. Pakankamai patikimas sprendimas nuo virusų yra antivirusinės programos (Symantec Norton Antivirus 2002, McAfee Antivirus), kurios sužadintos ieško kompiuteryje jau žinomų kompiuterinių virusų kodų ir pagal juos nustato viruso tipą, veikimo principą ir sunaikina jį. Tokių programų trūkumas yra tas, kad jas reikia kas dieną atnaujinti naujai atrastų virusų kodais. Kitos antivirusinės programos (Doctor Web) ieško virusų pagal jų veikimo požymius, t.y. tikrina bylas ir programų sistemines bylas, jų parametrus ir lygina juos su duomenimis esančiais ROM. Tokiu būdu sukaupiama labai įvairiapusiška virusų veikimo principų duomenų bazė. Ši programa gali surasti naujus virusus jei jų veikimo principas nedaug kuo skiriasi nuo kokių nors anksčiau kurtų, taip pat lengvai randami patobulinti virusai. Tokių antivirusinių programų trūkumas yra tas, kad tokios programos gali tik atpažinti virusą ir pranešti apie tai vartotojui, tačiau negali to viruso pašalinti. Labai populiarus yra apsauginių sistemų rinkiniai (Symantec Antivirus Solution 7.5, Norton Internet Security 2001). Juose yra įtrauktos ir antivirusinės programos ir IDS (intrusion detection system, t.y. programos, kurios ieško įsilaužimų į sistemą ir paraneša apie tai vartotojui), ugniasienės ( firewall t.y. programos, kurios seka visus žmones, kurie yra prisijungę prie tam tikro kompiuterio ir siunčia užklausimą vartotojui ar leisti jiems būti prisijungus), taip pat tuose rinkiniuose yra ir įvairių sprendimų paramos sistemų (programų, kurios remiasi jau įvykusiais įsilaužimų atvejais ir konsultuoja vartotoją kaip elgtis vienu ar kitu atveju). 4. Dviejų pakopų virusas Ne vienas yra gavęs „Klez“ virusą ar vieną jo atžalų – „Klez.A“, „Klez.E“, „Klez.F“ ar „Klez.H“. Yra keletas įdomių aspektų. Pirma, virusas išsiunčia daugybę įvairiausių laiškų. Jis pasiima adresus iš adresų knygutės ir dažniausiai turi idiotišką temos pavadinimą, pvz., „Japanese girl versus Playboy“, „Look, my beautiful girlfriend“ ar tiesiog „FW“. Laiško tekstas būna parašytas žargonu, o kartais jame kalbama apie patį „Klez“ virusą (kartu prisegama ir „pataisa“). Dar painiau tai, kad virusą dažnai atsiunčia gerą vardą turinčios antivirusinės kompanijos (jei norite būti saugūs, niekada nesinaudokite pataisomis ar atnaujinimais, gautais elektroniniu paštu,- juos geriau pasiimti iš interneto svetainių). „Klez“ virusas yra be galo pavojingas, nes tai – dar vienas virusų technologijos evoliucijos žingsnis. Piktybinis „Klez“ srautas turi daugybę vardų ir plėtinių. Tačiau labiausiai nerimą kelia tai, jog net viena viruso versija ieško vartotojo kompiuteryje antivirusinės programinės įrangos ir sugadina ją taip, kad pašalinus pavojų antivirusinė kompanija rekomenduos visiškai perinstaliuoti programinę įrangą. Šio viruso kūrėjai greičiausiai tiria aplinką sudėtingoms dviejų pakopų virusų atakoms ateityje, kurios gali būti surengtos pasinaudojant dvigubu virusu – supinančiu dvi iš pažiūros nekaltas gijas į kažką itin žalingo. Galimybės yra neribotos. Tačiau pagrindinės žiniasklaidos priemonės „Klez“ skiria mažai dėmesio ir „nurašo“ jį, lyg šis būtų tiesiog įkyrus nepatogumas. Nesigirdėjo, kad kas nors tirtų „Klez“ atsiradimo šaltinį. Galima tik teigti, jog virusą galėjo finansuoti vyriausybės. Anot Rusijos antivirusinės kompanijos „Kaspersky Lab“, naujausias „Klez“ variantas H labiausiai paplito Austrijoje, Kinijoje, Čekijoje ir Japonijoje. Tiesa, dviejų pakopų koncepcija įsilaužėliams – nenauja. Tokiu būdu veikia daugelis Trojos arklių rengiamų atsisakymo aptarnauti (DoS) atakų. Kompiuteris apkrečiamas kuo nors iš pažiūros nekaltu, o paskui staiga tas „kažkas nekaltas“ gauna nurodymą iš centro vykdyti „DoS“ ataką. Šis variantas gali būti tiesiog testas. Faktas, kad virusas kėsinasi į antivirusinę programinę įrangą, labiausiai kelia nerimą – norima pašalinti gynybą prieš tikrąją ataką. Vartotojai privalo turėti galvoje, kad jie yra pažeidžiami nepaisant to, ką sako antivirusinė programa. 5. Virusas “NIMDA” Pavadinimas “Nimda” sudarytas iš žodžio administratorius pradžios, parašius ją atvirkštine tvarka (Admin - Nimda). Šis virusas taip pavadintas dėl to, kad sugeba atlikti tam tikras administratoriaus funkcijas. “Nimda”, patekęs į pagrindinį tinklo kompiuterį, ne gadina jame esančių programų ir informacijos, o intensyviai siųsdamas užkrėstus laiškus, lėtina tinklo darbą. Firma “Symantec” šį virusą priskiria pačiai aukščiausiai — ketvirtai pavojingumo kategorijai. Jis puola neapsaugotus pagrindinius interneto tinklo kompiuterius (Web IIS) ir asmeninius kompiuterius, į kuriuos įdiegta “Internet Explorer” (5.0 ir 5.01), “Outlook” ar “Outlook Express” programa. Puldamas pagrindinį tinklo kompiuterį, virusas prisitaiko vienaip, o darbo stotį — kitaip. Patekęs į IIS pagrindinį tinklo kompiuterį, “Nimda” pakeičia bylų tipą į .htm, .html arba .asp. Tinklalapio lankytojams jis įteikia “dovanėlę” — viruso kopiją, pavadintą readme.eml, kuri lengvai užkrečia kompiuterį, nes *.eml bylas “Outlook” atverčia automatiškai. Kompiuterį virusu “Nimda” taip pat galima užkrėsti sužadinus elektroniniu paštu gaunamas bylas readme.exe (.com,. wav). Adresatą “Nimda” randa “Outlook” adresų knygelėje. Virusas “Nimda” labiausiai paplitęs Azijoje, Didžiojoje Britanijoje ir Amerikoje.
Informatika  Referatai   (12,44 kB)
Baitas (angl. byte) labai panašus į simbolį ar raidę žodyje. Paprastutis pavyzdukas: žodis šakar-makar turi 11 baitų (brūkšnelis irgi skaičiuojamas kaip vienas baitas). Informatikai ir kompiuterių kūrėjai žymiai greičiau už mus prisiminė metrinę sistemą ir ėmė naudoti kilobaitus (1000 baitų), megabaitus (1000000 baitų), gigabaitus (1000000000 baitų), terabaitus (1000000000000 baitų). Jeigu būsime visai tikslūs, tai kilobaitas turi 1024 (210) baitus, megabaitas – 1048576 (220) baitus, gigabaitas – 1073741824 (230) baitus, terabaitas - 1099511627776 (240) (kompiuteriai mėgsta daugybą, kuriuoje yra įsivėlęs skaičius 2). Tūkstantis kilobaitų yra lygiai tas pats, kaip ir vienas megabaitas (sutrumpintas žymėjimas: 1 Mb.). Tūkstantis megabaitų vadinama vienu gigabaitu (1 Gb). Vieną tūkstantį gigabaitų priimta vadinti vienu terabaitu (1 Tb.). Šiandien perkant gerą (žinoma, naują) kompiuterį iš geros firmos kietojo disko talpos standartas ne mažiau kaip trys gigabaitai. Tai nėra labai daug, nes vien jau firmos Microsoft operacinė sistema "Windows 98" pilna komplektacija (su visom galimybėm) užima apie 300 megabaitų, o kur dar biuro įrangos programa "Office 97" su savo 200 megabaitų (gamintojas - Microsoft, JAV), kūrybingiems (dizaineriams, dailininkams) sunku apsieiti ir be kanadiečių korporacijos Corel profesionalios grafikos paketo "Draw 8.0" (dydis - ~200 megabaitų). Tačiau kompiuteristų (taip vadinu žmones, kurie naudojasi kompiuteriu) laimei ne visos programos tokios griozdiškos. BigHead'o pamastymas kompiuterinės programinės įrangos klausimu: Programos naudingumas atvirkščiai proporcingas jos kainai ir dydžiui. Dvigubu intervalu tarp eilučių surinkto paprasto teksto DIN A4 formato lapas užima apie tūkstantį baitų arba vieną kilobaitą (tekstas be paveiksliukų, nemaketuotas), spalvota foto nuotrauka (matmenys: 10*15 cm., kokybė: 150 taškų colyje) - apie vieną megabaitą, muzikos minutė (sukompresuota Mpeg3 formatu) - taip pat apie vieną megabaitą. Tačiau, tik klasikiniai pavyzdžiai (tikrovė - sudėtingesnė)... Aš sąmoningai paminėjau, kad: 4. Vienas kilobaitas - tai TIK TEKSTAS (jokių paveiksliukų, formavimo, stiliaus). Kitaip tariant, tai LABAI kintamas dydis. Vienas paprastas pavyzdys: nors, tarkim, laikraštyje "Express Kontaktas" didžiąją vietos dalį sudaro tekstas, tačiau vieno numerio (numeryje - 24 lapai) maketas (su nuotraukomis, paveiksliukais, logotipais, skirtingais šriftais, stiliumi, antraštėmis) užima kiek daugiau nei (2*A4)*24 (paaiškinimas: į vieną laikraščio puslapį telpa 2 DIN A4 formato lapai, o laikraštyje jų - 24. Paaiškėja, kad tai TURĖTŲ užimti apie 48 lapai*1 kb.). Tikrasis maketo dydis - ~50 megabaitų (laikraštis maketuojamas naudojantis programa "Aldus PageMaker 5.0")! Daug? Nelabai, nors pirmą kartą išgirdus šį skaičių atrodo daugoka (reiktų prisiminti, kad laikraštis - NESPALVOTAS (o jei tiksliai - iš dviejų spalvų)). 5. Vienas megabaitas - tai SPALVOTA (matmenys: 10*15 cm, vaizdo kokybė: 150 taškų į colį) nuotrauka. O jeigu skanuojama nuotrauka didesnė? O jei aš užsimanysiu geresnės vaizdo kokybės? Kas tada? Atsakymas: baitų - stipriai padaugės... LABAI stipriai... Nes - ta pati nuotrauka, tik jau geresnės - 300 taškų į colį - kokybės užima ~4 megabaitus. Tikrai daugiau, ar ne? 6. Rašiau apie muziką, garsus... Rašiau, kad tai tik megas (kompiuteristai taip vadina megabaitus)/minutė... NEVISADA...! O jei aš muzikos nesukompresuosiu? Jei sukompresuosiu prastu kompresijos laipsniu? Tada vėl, visų nelaimei dydis... didės! Kyla paprastas (ir tuo pačiu sudėtingas) klausimėlis: o kaip gi aš galėsiu dalintis tąja informacija (tekstu, vaizdu, garsu)? Atsakymukas vėl paprastas (ir vėl tuo pačiu sudėtingas): gerai, jei tai užima mažiau nei 1.44 megabaitą (3,5 colio dydžio magnetinio diskelio talpa), nes tada aš galėsiu ir įsirašyti informaciją į standartinį (taip vadinu 3.5 colio dydžio) lankstųjį diskelį ir ten saugoti, bei duoti tam, kam reikia (ir kam nereikia). Yra ir kitas būdas - patalpinti informaciją pasauliniame, gigantiškame InterNete (kokiame nors tolimame nuo namų serveryje)... Viskas lyg ir gerai, kol bylos dydis neviršija 1.44 megabaito, bet šešiais atvejais ir dešimties taip nebūna. Aiškinsiu pavyzdžiu: man reikia pernešti iš Šiaulių į, tarkim, Maskvą dešimties megabaitų dydžio (išties gana didelė, ar ne?) bylą. Galimi mano veiksmai: 1. Suarchyvuoju (kitaip sakant, suspaudžiu ir supjaustau į gabalus) bylą 1.44 megabaito dydžio tomais, tuomet nueinu į orgtechnikos parduotuvę, nusiperku diskelių, nusideriu kainą, susimoku, ir tomus (po 1.44 megabaito) nukopijuoju (padarau tomų kopijas į diskelius (kopijos kompiuteryje lieka)) į diskelius ir galiausiai kokiu nors fantastišku būdu juos transportuoju. 2. Vėl suarchyvuoju (dydis mano laimei, pamažėja), tada per pažystamus susirandu kur nors tokią vietą, kur dideliais greičiais juda InterNet'as ir nusiunčiu minėtą gigantiškąją (ir ko gero svarbią) bylą tiems vargšams elektroniniu paštu). 3. Susirandu kokią nors gerą, šiltą, jaukią vietelę, kur yra aparatūra, galinti rašyti į kompaktinius diskus arba magnetoptinius diskelius (pastarieji sutinkami rečiau) ir tuomet įrašau failą į tą informacijos laikmeną, kuri man atrodo tinkamesnė. Galiausiai – transportacija.
Informatika  Referatai   (8,37 kB)
Dažniausiai sisteminę magistralę sudaro nuo 50 iki 100 laidininkų. Kiekvienas laidininkas atlieka skirtingą funkciją. Nepaisant to, kad yra daug magistralių tipų, kiekvienoje iš jų laidininkai gali būti grupuojami į tris funkcines laidininkų grupes: - adresų, - duomenų, - valdymo linijos. Be šių dar gali būti maitinimo linijų, reikalingų maitinti prie magistralės prijungtiems moduliams. Adresų linijomis nurodomas duomenų magistralėje esančios informacijos šaltinis ir imtuvas. Duomenų magistralės plotis lemia didžiausią galimą kompiuterio sistemos atminties talpą. Be to, adresų linijos dar naudojamos Įvesties/ išvesties prievadams adresuoti. Duomenų linijomis vyksta keitimasis duomenimis tarp kompiuterio modulių. Šių laidininkų visuma vadinama duomenų magistrale. Laidininkų skaičius nusako magistralės plotį (skiltiškumą). Kiekvienu laidininku tam tikru laiko momentu gali siunčiamas tik vienas bitas, todėl laidininkų skaičius parodo kiek duomenų galima siųsti vienu metu. Duomenų magistralės plotis yra svarbus parametras, lemiantis visos kompiuterinės sistemos pajėgumą. Valdymo magistralė kontroliuoja kreiptis į duomenų ir adresų linijas ir šių linijų naudojimą. 3. Magistralių hierarchija Jungiant į magistralę daugiau įrenginių nukenčia jos pajėgumas. Tai yra dėl dviejų priežasčių: 1. Kuo daugiau įrenginių sujungta į magistralę tuo didesnė signalų delsa. Delsą lemia laikas per kurį tam tikras įrenginys koordinuoja naudojimąsi magistrale. Kai magistralės valdymas dažnai pereina nuo vieno įrenginio kitam, ši delsa gali labai paveikti bendrą našumą. 2. Magistralė gali tapti kompiuterio silpnąja vieta, jeigu keitimosi duomenimis intensyvumas viršys magistralės galimybes. Šią problemą iš dalies galima išspręsti didinant duomenų siuntimo intensyvumą ir taikant platesnes magistrales. Tačiau keitimosi duomenimis, kuriuos generuoja į magistralę įjungti įrenginiai, tempai labai spartėja ir galiausiai nebebus užtikrinamas atitinkamas našumas. Siekiant spręsti šias problemas daugelyje sistemų naudojamos kelios magistralės. Yra tam tikra jų hierarchija. Dauguma kompiuterizuotų sistemų naudoja keliais magistrales. 2.1 pav. Yra keturios magistralės – lokalioji magistralė, PCI, AGP ir ISA. 3.1 pav. Magistralių hierarchijos pavyzdys 4. AGP magistralės veikimo principai AGP magistralė buvo sukurta kaip aukšto našumo grafinė jungtis. Ši jungtis išvengia PCI magistralės silpnųjų vietų, ir turi tiesioginį ryšį su pagrindine atmintimi. Naujoji AGP 3.0 specifikacija papildyta 8x rūšimi, kuri leidžia padvigubinti maksimalų siunčiamų duomenų persiuntimą palyginus su ankstesniu 4x, per vieną magistralės ciklą persiunčiamas dvigubai didesnis duomenų kiekis. 4.1 pav. matome grafinių jungčių pralaidumų didėjimą nuo PCI jungties iki AGP 8x. Čia AGP 1x, AGP 2x, AGP 4x ir AGP 8x pristato duomenų persiuntimo greičius. 4.1 pav.: Skirtingų jungčių duomenų pralaidumo būdai 4.1 AGP 3.0 jungties savybės • Naujas 8x duomenų persiuntimo būdas, padvigubinantis pralaidumą iki 2.1GB/s. • Nauja signalų siuntimo schema su keliais invertuotais signalais ir mažu įtampos svyravimu. • Naudojamas šoninis adresavimas, siekiant geresnio duomenų magistralės išnaudojimo. • Įjungiama kalibravimo schema, gerinanti signalo kokybę. • Dinaminė magistralės inversija, triukšmų mažinimui. • Asinchroninis veikimo būdas įgalinantis nenutrūkstamą duomenų siuntimą tinkamą video srautams. 4.2 Suderinamumas su AGP 4x • AGP 8x yra suderinama su AGP 4x jungtimi. • Tinka tie patys AGP 4x laidininkai, tik pridėta keletas signalinių jungčių AGP 8x palaikymui. • Naudojama ta pati jungtis kaip ir AGP 4x. • Suderinama su AGP 4x ir AGP Pro maitinimo schema. • motinines plokštės gali palaikyti abudu AGP 4x ir AGP 8x tipus. 4.3 Pagrindinės plokštės su AGP 8x architektūra 4.2 pav. matome subalansuotos pagrindinės plokštės architektūros pavyzdį. Aštuntos generacijos AMD Athlon™ procesorius su pagrindine plokšte sujungtas per AMD-8151™ HyperTransport AGP 3.0 grafinį tunelį. 6.4GB/s pilnas pralaidumas iš CPĮ į HyperTransport modulį įgalina AGP 8x ir kitus sisteminius Į/I modulius pasiekti optimalų našumą. 4.2 pav.: subalansuota pagrindinė plokštė su AGP 8x lizdu. 4.4 AK grafinės sistemos evoliucija Kad suprastume AGP grafikos privalumus ir naudą, reikia suprasti problemas kurios buvo sprendžiamos besivystant AGP technologijai. 4.3 pav. matome grafinės sistemos architektūrą sukurtą PCI magistralės pagrindu. Čia grafinė sistema patalpinta PCI magistralėje. Atkreipkite dėmesį kad PCI grafinis adapteris turi savyje integruotą video atmintį. Nors praeityje toks techninis sprendimas pasiteisino, atsirado keletas problemų kurios paskatino AGP grafikos atsiradimą: 1. Patobulinti grafines sistemos atmintį yra brangu, nes papildomi atminties moduliai turi būti pridėti į grafinę plokštę, arba turi būti keičiama pati plokštė. 2. Kadangi grafiniai duomenys, tokie kaip tekstūros yra saugomi pagrindinėje atmintyje, tai PCI magistralėje esanti grafinė plokštė juos gali pasiekti tik per PCI magistralę. Kreiptis tų duomenų reikia dažnai, nes pati grafinė plokštė turėdavo nedaug savos atminties. Taigi grafinė plokštė turi konkuruoti su kitais PCI magistralės moduliai dėl magistralės užimtumo ir pralaidumo. 3. Ir jeigu grafikos plokštė dažnai kreipiasi į PCI magistralę tada kiti magistralės periferiniai įrenginiai ,,badauja”. 4.3 pav.: Senesnio tipo pagrindinė plokštė naudojanti PCI magistralę grafikos apdorojimui. 4.4 ir 4.5 paveikslėliuose matome kaip AGP technologija išsprendžia problemas kilusias esant PCI magistralės grafikos plokštei. Šiuo atvejų AGP magistralė priklauso jau sistemos kontroleriui. AGP plokštė naudojasi 66 MHz PCI magistralės protokolu ir dar šoninio adresavimo galimybe siųsti komandas iš grafikos plokštės į AGP loginį įrenginį esantį Šiauriniame tilte. Šiaurinis tiltas priima skaitymo/ rašymo ir kitų komandų užklausas (naudoja buferius) tam kad įgalintų apsikeitimą duomenimis ir komandomis tarp AGP įrengininio ir sistemos kontrolerio, pilnu greičiu ir dar tuo pat metu keistųsi duomenimis tarp sistemos kontrolerio ir DDR atminties modulių. 4.4pav.: AMD-762™ sisteminis kontroleris ir AGP grafinė sistema. Vaizduojamas pagrindinės atminties naudojimas grafinėms operacijoms. Sistemų pavyzdžiai parodyti 4.4 ir 4.5 paveikslėliuose duoda tokią naudą: • Vietinė AGP sistemos architektūra siūlo svarbius našumo patobulinimus palyginus su PCI magistralės pagrindu veikusią grafinę sistemą. • AGP architektūra leidžia AGP grafinei sistemai matyti ir naudoti pagrindinę atmintį taip tarsi tai būtų jos pačios integruota atmintis – tai reiškia kad AGP plokštė dalinasi sistemine atmintimi. AGP grafinė plokštė nejaučia skirtumo tarp jos pačios ir pagrindinės atminties, visa atmintis atrodo kaip jos, vietinė. Galinis vartotojas gali didinti grafinės sistemos našumą įdėdamas papildomą pagrindinę atmintį vietoj to, kad papildytų brangią grafinę atmintį. • Grafinė sistema jau nebeturi konkuruoti dėl PCI magistralės pralaidumo kad pasiektų duomenis iš pagrindinės atminties. Tai leidžia grafiniai sistemai dirbti pilnu greičiu, beveik neturint pertraukčių iš kitų sistemos komponentų. Tai padidina visos sistemos konkurencingumą – reiškia kad procesorius, AGP grafinė sistemą, PCI magistralės įrenginiai gali veikti nepriklausomai vienas nuo kito ir konkurencingiau, taip didindami bendrą sistemos našumą. • PCI magistralės įrenginiai gali laisvai naudotis PCI magistrale, jiems nereikia ,,rungtis” su grafiniu adaptoriumi dėl magistralės. Taip PCI magistralė atsilaisvino nuo grafinės sistemos, padidėjo jos pasiekiamumas. 4.5 pav.: Aukšto lygio AGP prievado diagrama. Matome magistralės architektūrą ir Šiaurinio tilto komponentus. Bėgant laikui grafinė sistema buvo tobulinama, pervedama vis į didesnio našumo lygius. Kaip matome lentelėje yra eilė AGP tipų (duomenų siuntimo greičių) kurie atsirado laikui bėgant. Tai panašu į pavarų dėžę sportiniame automobilyje, pirma pavara atitiktų pirmąjį AGP 1x tipą, siūlantį duomenų persiuntimo greitį iki 264 MB/s. Antra pavara būtų AGP 2x, kuri padvigubino duomenų persiuntimą iki 528 MB/s. Trečia yra AGP 4x, siūlanti greitį iki 1 GB/s. Ir galiausiai ketvirtoji – paskutinė atitiktų AGP 8x, ir turėtų aukščiausią duomenų persiuntimo greitį – iki 2,1 GB/s. (Kaip pastebėjote žymėjimas 2x, 4x, ir 8x yra susijęs su pradiniu AGP 1x). 4.1 lentelė: AGP tipai ir atitinkami duomenų pralaidumai. AGP magistralės tipas Duomenų pralaidumas AGP 1x Iki 264 MB/s AGP 2x Iki 528 MB/s AGP 4x Iki 1 GB/s AGP 8x Iki 2,1 GB/s 4.5 vRAM tipai Grafinėse plokštėse atmintis susideda iš 2 dalių: kadro atminties ir papildomos atminties. Pigiose grafinėse plokštėse vRAM yra sudaryta iš SDRAM tipo atminčių, o greitose iš DDR-SDRAM. Yra specializuotos atmintys: VRAM-video atmintis, EDO VRAM , WRAM, SGRAM. Sparčiausios ir brangiausios yra VRAM ir WRAM. Grafinėse plokštėse informacija perduodama 64,128 ir net 265 bitų magistralėmis. Atminties kiekis būna : 34 DDR,64 MB DDR, 128 MB DDR, 512 MB DDR ir t.t. 4.6 Grafinis procesorius Jie yra visose grafinėse plokštėse, tai specializuota mikroschema. Grafinį procesorių valdo pagrindinis procesorius, o GP paskirtis yra grafinių objektų vaizdavimas ekrane. Yra 2D-dvimačių vaizdų, 3D- trimačių ir 2D/3D universalūs grafiniai procesoriai. Naujos plokštės turi 3D grafinį procesorių. Grafinių plokščių lyderis (buitinė, o ne profesionali) yra “nVidia GeForce X” šeimos vaizdo procesoriai. Juos gamina kompanija “nVidia”. Juose yra naudojama tik DDR atmintis. Juose naudojama sparti 166 MHz DDR SDRAM atmintis. 2002 vasaros pradžioje pristatytas 3D, trimačių vaizdų “nVidia GeForce4 Ti 4600” procesorius . Teigiama, kad “GeForce4” yra naujos kartos “nVidia” vaizdo procesoriai. Jie skirti 3D vaizdų kūrėjams ir žaidėjams, norintiems turėti itin gerus vaizdus. Atminties laidumas 2,7GB/s , 6,4 GB/s , 8,8 GB/s. 4.6 pav. AGP plokščių jungčių pagrindiniai išmatavimai 4.7 Apibendrinimas AGP magistralės tipas AGP 8x yra sekantis žingsnelis pirmyn didelio našumo grafinių jungčių evoliucijoje. Jis iš tikrųjų beveik dvigubai padidino AGP 4x grafikos galią. Ši sistema pasistūmėjo priekin tiekiant galiniam vartotojui vis geresnį ir tikroviškesnį vaizdą. Tačiau tai yra pats paskutinis AGP grafinių plokščių tobulinimo žingsnis, ateityje jau seks PCI Express grafikos apdorojimo plokštės. 5. Nuo PCI iki PCI Express – magistralių vystymasis 5.1 PCI Magistralė Nuo pradėjimo naudoti 1992 metais, PCI magistralė tapo stuburu Į/I įrenginiams visose kompiuterinėse sistemose. Pati pradinė 33 MHz ir 32 bitų pločio magistralė parodė teorinį greitį iki 133 MB/s. Laikui bėgant industrija išleido naujesnes platformų architektūras kuriose PCI magistralė buvo keičiama našesniais jos papildymais, tokiais kaip AGP ir PCI X, abidvi yra patobulinti PCI magistralės variantai. 1 lentelėje pristatomi PCI, PCI-X, ir AGP magistralių pralaidumai. 1 lentelė: PCI, PCI-X, ir AGP magistralių pralaidumai Magistralė ir jos dažnis 32 bitų pločio pralaidumai 64 bitų pločio pralaidumai 33 MHz PCI 133 MB/s 266 MB/s 66 Mhz PCI 266 MB/s 532 MB/s 100 MHz PCI X Nenaudojama 800 MB/s 133 MHz PCI X Nenaudojama 1 GB/s AGP 8x 2,1 GB/s Nenaudojama Iš arčiau tyrinėdami PCI signalų siuntimo technologiją atrandame multinumetimą magistralę (Multinumetimo [eng. multidrop] magistralė gaunama tada, kai prie jos jungiami įrenginiai, kiekvienas tais pačiais laidininkais. Kada vienas įrenginys naudoja magistralę, joks kitas negali pasiekti magistralės. Įrenginiai privalo dalintis magistrale ir laukti savo eilės, kol kiekvienas galės siųsti ar priimti duomenis), ir tai kad paraleli magistralė jau siekia savo našumo ribas. PCI magistralė negali būti paprastai patobulinta keliant taktinį dažnį, ar mažinant įtampą. Ir dar PCI magistralė neturi tokių savybių kaip galios valdymas, vietinių periferinių junginių karšto jungimo ar keitimo, (Galimybė įdėti ir išimti įrenginius iš kompiuterio jo neišjungus, ir kad operacinė sistema automatiškai atpažintų pasikeitimus), arba aptarnavimo kokybės [eng. QoS – Qualitu of service] kuri užtikrintų atitinkamą pralaidumą realių operacijų metu. Galiausiai visas įmanomas PCI magistralės pralaidumas yra tik į vieną pusę (siunčiant arba priimant) vienu laiko momentu. Daugelis ryšių tinklų palaiko dvikryptį eismą vienu laiko momentu, tai sumažina pranešimų vėlavimus. 5.2 Namų sistemos Pradinė PCI magistralė buvo kuriama kad palaikytų 2D grafiką, aukštesnio našumo diskinius kaupiklius ir vietinius tinklus. Neilgai trukus po PCI magistralės atsiradimo, išaugę 3D grafikos sistemų reikalavimai jau nebetilpo į 32 bitų, 33 MHz PCI magistralės pralaidumą. Siekdami tai pataisyti kompanija Intel ir keletas kitų grafinių gaminių gamintojų sukūrė AGP magistralės specifikaciją. Kuri buvo apibrėžta kaip aukšto našumo PCI magistralė skirta grafikai apdoroti. Taigi AGP magistralė išlaisvino PCI sisteminę magistralę nuo grafikos eismo, ir paliko ją kitiems ryšiams bei Į/I operacijoms. Prie to Intel kompanija įvedė USB 2.0 ir Nuoseklią ATA jungtis į pietinį tiltą, taip dar labiau sumažindama Į/I operacijų paklausą PCI magistralėje. 5.1 pav. matome tipiškos namų vartotojo sistemos vidinę architektūrą su Į/I ir grafinio įrenginių pralaidumais. 5.1 pav.: Tipinė namų vartotojo sistemos architektūra 5.3 Namų vartotojo sistemos silpnosios vietos Keletas namų vartotojo sistemos magistralių gali riboti sistemos našumą, dėl CPĮ, atminties ir Į/I įrenginių skirtumų: tai PCI magistralė, AGP magistralė ir ryšys tarp Šiaurinio ir pietinių tiltų. PCI magistralė. PCI magistralė suteikia iki 133 MB/s pralaidumą įjungtiems į ją įrenginiams. Keletas šių įrenginių gali išnaudoti visą pralaidumo juostą, arba naudoti didžiąją jos dalį. Kada daugiau kaip vienas šių įrenginių yra aktyvus, bendrai naudojama magistralė jau spaudžiama virš jos pralaidumo ribos. 5.2 pav. matome daugelį veiksnių taikančių į PCI magistralės silpnąją vietą. Šiame paveikslėlyje matome kokio pralaidumo reikia įvairiems ryšių, video, ir kitiems išoriniams įrenginiams kurie yra aptarnaujami PCI magistralės. Taigi matome kad multinumetama, bendrai naudojama, PCI magistralė yra spaudžiama kad palaikytų šiandienos įrenginius. Situaciją blogina tai kad kuriami įrenginiai su vis didesniais duomenų greičiais. Pavyzdžiui Gigabit Ethernet reikalauja laidumo iki 125 MB/s, tai jau beveik pilnai užpildo 133 MB/s PCI magistralę. Įrenginio IEEE 1394b magistralė yra iki 100 MB/s, tai irgi beveik užpildo standartinę PCI magistralę. AGP. Paskutinį dešimtmetį video našumo reikalavimai praktiškai dvigubėjo kas du metai. Per šį laikotarpį grafinė magistralė iš PCI tapo AGP, iš AGP – AGP 2x, AGP 4x ir galiausiai šiuo metu AGP 8x. AGP 8x dirba 2,134 GB/s greičiu. Nežiūrint šio greičio viskas žengia į priekį ir AGP magistralėms jau keliami nauji dar didesni reikalavimai. Spaudimas daromas ir pagrindinių plokščių dizainui ir jungčių kainoms. Kaip ir PCI magistralę, plėsti AGP magistralę darosi sunku ir brangu, nes didėja taktiniai dažniai. 5.2 pav.: Įrenginių aptarnaujamų PCI magistralės pralaidumo dažniai Ryšys tarp Šiaurinio ir Pirtinio tiltų. PCI magistralės perpildymas taip pat atsiliepia ir ryšiui tarp Šiaurinio ir Pietinio tiltų. Serial ATA diskai ir USB įrenginiai toliau spaudžia šį ryšį. Taigi ateityje aukštesnio pralaidumo ryšys bus reikalingas. 5.4 Serveriai Serveriuose pradinė 32 bitų, 33 MHz PCI magistralė buvo išplėsta iki 64 bitų, 66 MHz magistralės su pralaidumu iki 532 MB/s. Po to 64 bitų magistralė buvo patobulinta iki 100 ir 133 MHz, ir pavadinta PCI X. PCI X magistralė jungia serverinės sistemos (dviejų procesorių darbo stotis) mikroschemų rinkinį su išplėtimo jungtimis, Gigabit Ethernet valdikliais, ir Ultra 320 SCSI valdiklius įtaisytus pagrindinėje plokštėje. 64 bitų, 133 MHz dažniu dirbanti magistralė persiunčia iki 1 GB/s duomenų tarp Į/I įrenginio ir valdymo schemos. Tai yra tenkinantis pralaidumas daugumai serverinių sistemų Į/I įrenginių reikalavimui, tokių kaip Gigabit Ethernet, Ultra 320 SCSI, ir 2 GB/s Fibre Channel. Tačiau kaip bebūtų PCI X ,kaip ir PCI, yra bendro naudojimo magistralė ir panašu kad jai jau sekančiais metais reikės dar didesnio našumo alternatyvos. PCI Special Interest Group (PCI SIG) jau kuria PCI X 2.0 specifikaciją, kuri dirbtų 64 bitų, 266 MHz taktiniu dažniu ir padidintų duomenų perdavimo greitį dvigubai palyginus su PCI X 133 MHz. Tačiau kaip bebūtų iškyla problemos plečiant šį lygiagrečios PCI X magistralės variantą. Pačios jungtys yra didelės ir brangios, ir griežtas jų dizainas gana smarkiai kelia pagrindinių plokščių kainas keliant ir taktinį dažnį. Prie to dar reikia pridėti tai kad išvengtume papildomo elektrinio apkrovimo aukštesniuose dažniuose, PCI X 2.0 tik vienas įrenginys galės būti jungiamas prie magistralės. Ši jau nebus pritaikoma bendram naudojimui. Serverinės sistemos silpnosios vietos 5.3 pav. matome tipinės dviejų procesorių serverinės sistemos vidines jungtis. Šioje architektūroje aukšto laidumo išplėtimo magistralė padaroma atskirai sujungus Šiaurinį tiltą su su PCI X tilto mikroschema. Keletas PCI X magistralių prijungtos prie aukšto greičio išplėtimo magistralių, 10-Gigabit Ethernet, ir SAS/SATA diskų valdikliai. Ši architektūra turi ir neigiamų savybių. Atskira PCI X tilto mikroschema sujungia keletą lygiagrečių PCI X magistralių į į pagrindinės plokštės valdymo mikroschemos atskirą nuoseklią jungtį. Šis kelias yra brangus neefektyvus, ir dar atsiranda vėlavimai tarp Į/I įrenginio ir Šiaurinio tilto. Pavyzdžiui šiuo būdų prijungus 10 Gbps plokštę į 64 bitų lygiagrečią jungtį, taip išeina kad įrenginys yra tiesiogiai per PCI X tilto valdiklį į atskirą nuoseklią jungtį su Šiauriniu tiltu. 5.3 pav.: Dviprocesorinis serveris dar galima pridėti kad sekančios kartos išoriniai serveriniai Į/I įrenginiai reikalaus daug didesnio pralaidumo negu 133 MHz PCI X magistralė gali užtikrinti. Tai tokios technologijos kaip 10-Gigabit Ethernet, 10-Gbps Fibre Channel ir 4x Infiniband, prie jų taip pat priskaitomi ir labai aukšto greičio diskinių kaupiklių jungtys tokios kaip 3-Gbps SATA ir SAS. Tokiu atveju jeigu turėtumėm 10-Gbps fabric įrenginį, kiekvienas 10 Gbps lizdas į abi kryptis gali siųsti duomenų srautą iki 2 GB/s, tuo tarpu PCI X magistralė maksimaliai gali priimti tik 1 GB/s į vieną pusę vienu laiko momentu. Taigi matome, kad ši magistralė ribotų šį įrenginį iki 50 %. Nors PCI X 2.0 dirbanti 266 MHz padvigubintų tai ką gali pristatyti PCI X iki 2 GB/s tačiau tai vis tiek būtų per mažai, nes iš viso 4 GB/s reikalingi dviejų lizdų, dvipusiam 10-Gbps fabric valdikliui. Iš to matome kad reikalinga magistralė galinti pakeisti lygiagrečią PCI magistralę ir jos variantus. 5.5 PCI Express technologija PCI Express siūlo keliamą daugikliu, aukšto greičio, nuoseklią Į/I magistralę kuri turi gali yra suderinama ir su PCI įrenginiais. PCI Express sluoksniuota architektūra palaiko esančius PCI įrenginius, taip pat ir dabartinę plokščio adresavimo galimybę. PCI Express yra aprašoma kaip aukšto našumo, taškas į tašką jungiama, su daugikliais, nuoseklioji magistralė. PCI Express susideda iš dviejų vienkrypčių kanalų, kiekvienas iš jų sudarytas iš siuntimo ir priėmimo poros, kad būtų įmanomas siuntimas abiem kryptimis tuo pačiu laiko momentu. Kiekvienoje iš porų yra du žema įtampa valdomi signalai. Duomenų taktavimas integruotas į kiekvieną porą, naudoja 8b/10b kodavimo schemą, kad pasiektų tokius aukštus duomenų siuntimo kiekius. 5.4 pav. galime palyginti PCI ir PCI Express sujungimus. 5.4 pav.: PCI Prieš PCI Express PCI Express magistralės pralaidumą galime didinti įdėdami papildomas signalų poras tarp dviejų įrenginių. Ši magistralė palaiko x1, x4, x8, ir x16 linijų pločius, ir išdėlioja duomenų baitus pagal linijas. Kada du įrenginiai paruošia linijas ir darbo dažnį , duomenys yra siunčiami naudojant 8b/10b kodavimą. Pats pradinis x1 tipas gali siųsti iki 2,5 Gbps. Kadangi magistralė yra dvikryptė (duomenys abiem kryptimis siunčiami tuo pat momentu) tai efektyvusis siuntimo greitis yra 5 Gbps. 5.1 lentelėje matome susumuotus koduotus ir nekoduotus duomenų siuntimo greičius, naudojant x1, x4, x8, ir x16 modelius, kurie yra aprašyti jau pačioje pirmojoje PCI Express generacijoje. PCI Express “koduotas” ir “nekoduotas” pralaidumas Dažnai sakoma kad PCI Express pralaidumas yra koduotas. PCI Express naudoja 8b/10b kodavimą, kuris užkoduoja 8 duomenų bitus į 10 siuntimo simbolių. Tai daroma dėl to kad bitų sinchronizavimas būtų paprastesnis, paprastesnis siųstuvo ir imtuvo dizainas, padidinta galimybė surasti klaidas, ir valdymo simboliai gali būti atskirti nuo duomenų simbolių. Koduotas PCI Express x1 linijos pralaidumas yra 5 Gbps. Ko gero daug tikslesnis yra nekoduotas pralaidumas kuris būna apie 80 % nuo koduoto t.y. nuo 5 Gbps - 4 Gbps. 5.2 lentelėje matome koduotų ir nekoduotų duomenų siuntimo pralaidumus. 5.2lentelė. PCI Express pralaidumas Ateityje šios magistralės tobulinimai dar labiau pakels kanalų dažnį, pavyzdžiui antros kartos PCI Express galėtų pakelti taktavimo dažnį du kartus ir daugiau. Kadangi ši magistralė yra tiesioginė, taškas į tašką tai jos dažnis priklausys prie no jos prijungto įrenginio. Keletas PCI Express įrenginių galės veikti vienu metu netrukdydami vienas kitam. Priešingai negu PCI, PCI Express turi minimalius pašalinius signalus, be to ir taktavimo dažniai ir adresai yra sudėti į duomenų srautą. Todėl kad PCI Express yra nuosekli magistralė su keliais šalutiniais signalais, ji praleidžia labai daug duomenų per vieną jungties laidininką, daug daugiau palyginus su PCI. Tokia archtektūra leidžia turėti efektyvesnę, mažesnę ir pigesnę jungtį. 5.5 pav. bandoma palyginti duomenų kiekio pralaidumą per vieną jungties takelį PCI, PCI-X, AGP, ir PCI Express magistralėse. 5.5 pav.: Duomenų pralaidumo per vieną jungties takelį palyginimai PCI Express technologijoje didelis duomenų perdavimo patikimumas pasiekiamas naudojant žemos įtampos diferencialinius signalus. Čia signalas iš siųstuvo imtuvui siunčiamas per dvi linijas. Vienoje linijoje siunčiamas teigiamas signalas, o kitoje tas pats signalas tiktais invertuotas arba neigiamas. Linijos kuriomis siunčiami signalai daromos pagal griežtas taisykles, siekiant gauti tą savybę kad jei vieną liniją keis trukdžiai ir kita bus keičiama tų pačių trukdžių. Imtuvas priima abu signalus, neigiamą atverčia atgal į teigiamą, ir sumuoja abudu, taip efektyviai pašalinami triukšmai. Pradinė PCI Express magistralė palaiko grafines plokštes kurių vartojama galia yra iki 75 W. naujesnėje numatomos galimybės palaikyti įrenginius iki 150 W. tai turėtų tenkinti rinką nes dabartinės AGP plokštės naudoja iki 41 W, ir AGP Pro tipo iki 110 W. 5.6 Pažangiausios PCI Express savybės PCI Express turi šias savybes kurios bus pradėtos naudoti kada operacinė sistema ir įrenginiai jau palaikys jas, ir kada vartotojui jos pasidarys reikalingos. Jos yra: • Pažangus maitinimo valdymas • Duomenų kontrolės realiame laike palaikymas • Karštas jungimas • Duomenų integralumas ir klaidų aptikimas bei taisymas Pažangus maitinimo valdymas PCI Express magistralėje yra aktyvios būsenos maitinimo valdymas, kuris įgalina sumažinti galios vartojimą kada magistralė yra nenaudojama (taip nutinka tada kai nėra apsikeitimo duomenimis tarp įrenginių). Paralelių magistralių atveju magistralė būna laisva kol nėra užklausos siųsti duomenis. Priešingai didelės spartos nuosekli magistralė PCI Express reikalauja kad linija būtų bet kuriuo laiko momentu pasiruošusi, kad siųstuvas ir imtuvas būtų pasiruošę siųsti duomenis. Tai padaroma nuolat siunčiant tuščiosios eigos signalus kada nėra siunčiami duomenys. Imtuvas iškoduoja ir atmeta signalus jeigu jie yra tuščiosios eigos simboliai. Šis procesas reikalauja papildomo maitinimo, o tai įtakoja nešiojamo ar delninio kompiuterio baterijos darbo laiką. Sprendžiant šią problemą buvo pasiūlytas sprendimas naudoti dvi žemos galios būsenos jungtis ir aktyvios būsenos maitinimo valdymo protokolą. Kada magistralė pereina į tuščios eigos būseną, jungtis yra nustatoma į žemo maitinimo būseną. Ši būsena naudoja daug mažiau galios kol magistralė dirba tuščiuoju režimu. Tačiau norint grįžti į normalų darbo režimą reikalingas atstatymo laikas, kurio metu siųstuvas ir imtuvas yra iš naujo sinchronizuojami. Kuo ilgesnis atstatymo laikas tuo mažiau galios magistralė naudoja tuščios eigos metu. Dažniausiai naudojamas tas atvejis kada atkūrimo laikas yra pats trumpiausias. Duomenų kontrolės realiame laike palaikymas Ne taip kaip PCI, PCI Express magistralė palaiko nesinchroninį (priklausantį nuo laiko) duomenų siuntimą ir įvairius Aptarnavimo kokybės lygius [angl. QoS]. Ši savybė įgyvendinta virtualių kanalų pagalba, kurie garantuoja kad duomenų paketas bus pristatytas į vietą per tam tikrą laiko momentą. PCI Express palaiko didelį tokių virtualių kanalų skaičių (kiekvienas iš jų yra nepriklausomas nuo vienas kito) į vieną liniją. Dar kiekvienas kanalas gali turėti skirtingą aptarnavimo kokybės lygį. Šis sprendimas taikomas tokioms realaus laiko operacijoms kaip garso ir vaizdo medžiagos perdavimui. Karštas jungimas PCI magistralės pagrindu sukurtos sistemos nepalaiko karšto jungimo ar keitimo operacijų. Vėliau patobulintoje PCI magistralėje buvo numatyta galimybė keisti išorinius įrenginius neišjungiant sistemos. Čia yra keletas reikalavimų dėl kurių buvo kuriama tokia sistema: -Dažnai yra sunku ir kartais visai neįmanoma išjungti serverį kad pakeistume ar įdėtume periferinę plokštę. Karšto jungimo galimybė leidžia to visai nedaryti. -Nešiojamų kompiuterių savininkai, nori turėti galimybę naudoti karšto jungimo nešiojamus diskų ar ryšių įrenginius. PCI Express magistralė pilnai palaiko karšto jungimo ar keitimo galimybę. Nereikia jokių papildomų linijų, ir vienoda programinė įranga gali būti naudojama visiems PCI Express tipams. Duomenų integralumas ir klaidų aptikimas bei taisymas PCI Express palaiko visų siuntimo tipų duomenų integralumą, ir duomenų grandininius paketus. Tai labai tinkama naudoti serverinėse sistemose kur yra labai didelis tam tikrų duomenų poreikis. PCI Express taip pat palaiko klaidų tvarkykles kurios praneša apie klaidas, ir padeda duomenų atstatymo atveju. 5.7 Apibendrinimas Taigi PCI Express magistralė yra susijusi ir su PCI magistrale, tačiau turi ir keletą pagrindinių skirtumų kurie leidžia išvystyti didelį apsikeitimo duomenimis greitį. Vienas iš jų yra didelio greičio nuosekli jungtis. Ši magistralė bus taikoma visose kompiuterių sistemose – ir nešiojamuose, ir namų vartotojų ir serveriuose, ir tarnybinėse stotyse. Mūsų rinkoje šios magistralės jau pasirodė šiais metais, tačiau kaip ir tikėtasi aukštomis kainomis.
Informatika  Referatai   (405,33 kB)
Informatika
2010-01-18
Kas yra informatika? Informatika - tai mokslas apie informaciją, jos perdavimą, kaupimą, saugojimą, apdorojimą. Kas yra informacinės technologijos? Informacinės technologijos - tai informatikos taikymas, kompiuterio ir kitos kompiuterinės įrangos naudojimas įvairiose srityse. Kas yra kompiuteris? Kompiuteris - tai elektroninis įrenginys, kuris gali apdoroti duomenis ir valdyti kitus įrenginius bei procesus. Duomenų bazių valdymo programos? Duomenų bazių valdymo programa - programa palengvinančios darbą su dideliais susietų duomenų kiekiais.
Informatika  Paruoštukės   (6 psl., 18,78 kB)
Plastikai
2010-01-12
Plataus vartojimo prekių gamybai, technikos, statybos, žemės ūkio reikalams plačiai naudojamos medžiagos vadinamo plastikais arba plastmasėmis. Todėl labai svarbu susipažinti su plastikų samprata, sudėtimi, klasifikavimu, savybėmis, rūšimis ir plačiu plastikinių prekių asortimentu, bei reikalavimais prekių kokybei ir jų ženklinimu. Darbo tema: viskas iš platikų.
Pramonė  Tyrimai   (10 psl., 22,5 kB)
Nafta
2010-01-10
Žemės plutoje susidaręs aliejaus konsistencijos, degus, savito kvapo skystis. Sudėtingas įvairių angliavandenilių, deguonies, sieros ir azoto junginių mišinys. Didžąją dalį (83 – 87%) sudaro skysti, sotieji angliavandeniliai, arba parafinai (nuo C5H12 iki C15H32), cikliniai (naftenai) ir aromatiniai angliavandeniliai, kuriuose būna ištirpusių dujinių (meteno, etano, propano, butano) ir kietų (nuo C16H34 iki C35H72) angliavandenilių.
Aplinka  Referatai   (8 psl., 19 kB)
Nikelis ni
2010-01-04
Nikelis yra sidabriškai baltas, kietas, kalus, tąsus. Lydymosi temperatūra yra 1453oC, o virimo 2730 oC Metalo tankis yra 8900 kg/m3 .Specifinė šiluminė talpa yra 0,44 kJ. Normaliose sąlygose nikelis atsparus oro, vandens ir šarmų poveikiui. Tirpsta praskiestose oksiduojančiose rūgštyse. Koncentruota azoto rūgštis pasyvina nikelį. Aukštesnėje negu 500 0C temperatūroje reaguoja su deguonimi, sudarydamas oksidą NiO - žalsvus kristalus. Kaitinamas reaguoja su halogenais, siera, selenu, telūru, fosforu. Iš Nikelio junginių praktinę reikšmę turi nikelio sulfatas ir nikelio chloridas, kurie yra svarbūs nikeliuojant. Nikelis gaunamas iš rūdų hidrometalurginiu arba pirometalurginiu būdu. Gryninamas elektrolize. Iš gryno nikelio gaminama tigliai, laboratorinės mentelės, akumuliatorių elektrodai ir t.t. Smulkiadispersis nikelis vartojamas kaip katalizatorius ir antikorozinių dažų pigmentas. Nikelis yra visuose organizmuose: augaluose vidutiniškai 5•10-5% žaliosios masės, sausumos gyvūnuose1•10-6%, jūrų gyvūnuose - 1,6•10-4%. Daugiausia nikelio yra lapinėse daržovėse. Augaluose jo funkcija menkai ištirta. Žmogaus ir gyvūnų organizme nikelis svarbus kraujodarai. Jo perteklius pašaruose sukelia avių ligą keratitą. Nikelio rūdos, mineralų sankaupos, iš kurių gaunamas nikelis. Skiriamos sulfidinės vario-nikelio rūdos ir silikatinės. Sulfidinėse vario-nikelio rūdose svarbiausi mineralai yra pentlanditas, mileritas, kubanitas, pirotinas ir t.t. Jų telkiniai susiformuoja iš bazines magmos. Nikelio kiekis rūdose nuo 0,3% iki 4%. Be nikelio ir vario, iš šių rūdų gaunamas kobaltas, auksas, platina, paladis, rodis, siera. Silikatinių nikelio rūdų telkiniai susidaro iš ultrabazinių uolienų dūlėjimo plutoje. Jų pagrindiniai mineralai (silikatai ir oksidai):nontronitas, kerolitas, serpentinas… Kai kuriose telkiniuose silikatinės nikelio rūdos turi daug geležies 50-60%, o nikelio 1-1,5%. Nikelis yra svarbiausias nikelio lydinių komponentas. Dažniausiai vartojami nikeliniai lydiniai su variu, chromu, molibdenu, kobaltu, aliuminiu, titanu. Jie plastiški, stiprūs, atsparūs korozijai. Skiriami liejamieji ir deformuojamieji nikeliniai lydiniai. Pagal paskirtį ir vieni, ir kiti būna konstrukciniai, elektrotechniniai, kaitrai atsparūs ir specialieji. Būdingiausi konstrukciniai nikelio lydiniai-monelis. Jame yra 68% nikelio, 28% vario, 2,5 % geležies , 1,5% mangano. Iš jo daromos stiprios, atsparios korozijai detalės, vartojamos chemijos, naftos pramonėje medicinos, laivų statyboje. Iš elektrotechninių nikelio lydinių-aliumelio, chromelio, konstanto, kopelio, nichromo gaminamos termoporos, reostatai, varžymų ritės, kaitinimo elementai. Kaitrai atsparūs - nimonikai ir hastelojai. Iš jų daromos durų dujų turbinų ir kitų jėgos įrenginių detalės, kurioms tinka dirbti iki 12500C temperatūros chemiškai agresyvioje aplinkoje. Specialiesiems nikelio lydiniams priklauso ryškių magnetinių savybių lydiniai: perminvaras, vartojami matavimo prietaisų, telefono ir radijo technikos detalėms gaminti; alniai ir alnikai- nuolatiniams magnetams gaminti; invaras, turintis pastovų šiluminio plėtimosi koeficientą, iš jo daromos matavimo ir kitų tiksliųjų prietaisų detalės; elinvaras, jis turi pastovų tamprumo modulį, todėl iš jo galima daryti laikrodžių spyruokles. Nikelis priklauso feromagnetikams. Feromagnetikai, tai kristalinės medžiagos, kurių atomai priešpaskutiniuose elektriniuose sluoksniuose turi nesukompensuotus sakinius. Feromagnetikus sudaro šie elementai:geležis, nikelis, kobaltas, gadolinis, disprozis, erbis, tulis, holmis, terbis. Feromagnetikams būdinga įmagnetėjimo sotis. Kiekvienas feromagnetikas turi Kiuri temperatūrą. Nikelio Kiuri temperatūra yra 3580C. Dažnai mes girdime, kad koks nors daiktas yra nikeliuotas. Nikeliavimas, tai elektrocheminis ir cheminis nikelio nusodinimas ant metalinių ir nemetalinių dirbinių paviršiaus. Būna dviejų rūšių nikeliuojama, elektrolizuojant nikelio sulfato, chlorido ir kitų druskų tirpalus su įvariais priedais, o antras būdas yra redukuojant tuos tirpalus su įvariais reduktoriais, pvz.: natrio hiposfitu. Tačiau dažniausiai nikeliuojam elektrocheminiu būdų.Nikelio danga yra atspari šarmų, neoksiduojančių rūgščių, nekarštų ir neturinčių ištirpusio deguonies druskų tirpalų, halogenų, sieros ir jos dioksido poveikiui.Gaunamos matinės, pusiau blizgios ir blizgiosios, vienasluoksnės, dvisluoksnės ir trisluoksnės nikelio dangos. Visa tai priklauso nuo elektrolizės rėžimo ir elektrolito sudėties. Norint gauti nikelio dangą, atspariasnę korozijai, kaitrai, atmosferos poveikiui, kietesnę už kitas nikelio dangas arba turinčių specifinių savybių, pvz: veliūro tipo arba matinė juoda nikelio danga gaunama į elektrolizuojamą tirpalą pridėjus organinių emulsijų arba neorganinių medžiagų. Dažniausiai nikeliavimas komponuojamas su kitais elektrocheminiais nusodinimais, pvz.:plienas, cinko lydiniai iš pradžių variuojami, o paskui nikeliuojami, aliuminio lydiniai- bronzuojami, nikeliuojami ir chromuojami. Nikeliavimas vartojamas plieno gaminių, cinko, aliuminio, magnio ir kitų lydinių, keramikos, plastikų, stiklo apsaugai nuo korozijos, apdailai, gaminių paviršiaus savybių gerinimui.
Chemija  Konspektai   (8,35 kB)
Natris
2010-01-04
Naujajame Testamente minima medžiaga neter, kuri buvo naudojama skalbimui. Ta pati medžiaga, kuri buvo žinoma dar senajame Egipte, minima graikų (Aristotelis, Dioskoridas) nitron pavadinimu, o senovės romėnų (Plinijus) buvo vadinama nitrum . Visais šiais atvejais, matyt, kalbama apie sodą, t.y. natrio karbonatą ir, iš dalies, apie potašą, kurio tuo metu nesugebėta atskirti nuo sodos. Arabų alchemikai vietoje termino nitrum vartojo natron . Alchemiko Geberio (14-15 a.) rankraščiuose greta pirmą kartą pavartoto termino soda sutinkamas pavadinimas alkali. Alchemikams priimtiniausi buvo pavadinimai, atspindintys atitinkamų medžiagų kilmę. Pvz., potašas gautas iš vyno akmens, buvo vadinamas sal tartari, o gautas iš augalų pelenų – sal vegetable. Nuo 1600 m. šarminių metalų druskos vadinamos sal lixiviosium, iš kurio kilo vokiškas žodis “Laugensalz”. Skirtumus tarp natrio (valgomosios druskos) ir kalio, kuris tuo metu karbonatų pavidalu buvo gaunamas iš augalų pelenų, pirmasis pažymėjo Štalis (Stahl, 1660-1734 m.) 1702 metais. Dviejų elementų egzistavimą eksperimentiškai pirmasis įrodė Diumelis de Monso (Duhamel de Monceau, 1700-1781 m.) . Markgrafas 1758 m. nustatė, kad šie elementai skirtinga spalva nudažo liepsną. Klaprotas (Klaproth, 1797 m.) pirmą kartą įrodė, kad kalis, nepaisant tuo metu paplitusio pavadinimo alkali vegitable , sutinkamas ir mineraluose. 18 amžiuje chemikai žinojo jau daug įvairių natrio druskų. Natrio druskos plačiai buvo naudojamos medicinoje, apdorojant odas, audinių dažymui. Tačiau iki 19 a. elementas vis dar nebuvo atrastas. Šis metalas buvo per daug aktyvus, todėl tradiciniais cheminiais metodais jo išskirti nepavykdavo. 1807 m. lapkričio 19 d. Karališkosios draugijos posėdžio metu seras H. Devis (Davy) Paskelbė atradęs du naujus elementus – natrį ir kalį. Tai padaryti jam pavyko elektros srovės pagalba, panaudojant vienintelį tuo metu pastovios srovės šaltinį – Voltos stulpą. D. Mendelejevas apie šį atradimą rašė: “Sujungdamas su teigiamu (vario ar anglies) poliumi gabalą drėgno (siekiant padidinti laidumą) natrio šarmo ir išskaptavęs jame įdubimus, pripildytus jame gyvsidabrio, sujungto su stipraus Voltos stulpo neigiamu poliumi, Devis pastebėjo, kad tekant srovei, gyvsidabryje tirpsta įpatingas metalas, mažiau lakus už gyvsidabrį ir sugebantis skaldyti vandenį, vėl sudarydamas natrio šarmą”. Devis pirmasis ištyrė natrio ir kalio savybes, pažymėdamas jų sugebėjimą lengvai oksiduotis, ir nurodė, kad natrio garai užsidega ore. Nepaisant to, kad H. Devio atradimas buvo didžiulis atardimas chemijoje, to meto technikai jis nedavė apčiuopiamos naudos. Juolab, kad niekas ir nežinojo, kokią naudą aplamai gali duoti minkšti ir labai aktyvūs bei užsidegantys ore, veikiant vandeniui, metalai. PAPLITIMAS GAMTOJE Kadangi natris lengvai oksiduojasi, laisvas apčiuopiamais kiekiais gamtoje nesutinkamas. Įvairių junginių pavidale natris sudaro 2,64% visos žemės plutos masės. Natrio pėdsakai aptikti Saulės atmosferoje ir tarpžvaigždinėje erdvėje. Tirpių druskų pavidale hidrosferoje natris sudaro ~2,9%, esant bendram 3,5-3,7% jūros vandens druskingumui. Baltijos jūros vandenys turi tik 0,6-1,7% NaCl, kai tuo tarpu Viduržemio jūros vandenyse jo yra iki 3%, o Raudonojoje jūroje iki 3,5%. Uždarose jūrose šios druskos kiekis dar didesnis. Negyvosios jūros vandenyse greta kitų druskų yra ~20% NaCl. Absoliutus kiekis natrio jūros vandenyse sudaro ~1,5·1016 tonų. Žemės plutoje natris sutinkamas įvairių druskų pavidale. Svarbiausios iš jų: natrio chloridas NaCl (akmens druska, galitas), natrio sulfatas Na2SO4·10H2O (mirabilitas, glauberio druska), natrio nitratas NaNO3 (Čilės salietra), natrio-aliuminio heksafluoridas 3NaF·AlF3 (kriolitas), tetraboratas Na2B4O7·10H2O (boraksas, tinkalas), silikatai – lauko špatai Na[AlSi3O8] (albitas), nefelinas Na[AlSiO4], sodalitas Na3[Al3Si3O12]·NaCl, neozanas Na3[Al3O12]·Na2SO4, gajuinas Na3[Al3Si3O12]·(Na2, Ca)[So4], lazuritas (ultramarinas) Na3[Al3Si3O12]·Na2S2, skapolinas Na3[Al3Si9O24]·NaCl ir kt. Kartu su Ca, Si, Ba, Mg, Al ir retaisiais elementais natris įeina į gamtinių silikatų sudėtį. Nedideli natrio kiekiai yra augaluose, pvz., tūkstantlapio (Achillea milleofillium) žolėje rasta tik 0,0006% Na. Šviežioje jūros žolėje (Zostera morina) yra 0,547%, o jos pelenuose 16,78% Na. Natrio junginiai, daugiausia natrio chlorido pavidale, sutinkami gyvūnų organizmuose. Taip, pvz., kraujo plazmoje natrio jonai sudaro 0,32%, kauluose 0,6%, raumenų audiniuose 0,6-1,5%. Papildydamas natūralius Na nuostolius, žmogaus organizmas kasdien turi suvartoti 4-5 g natrio NaCl pavidale. Natrio druskų žaliavų šaltiniai plačiai paplitę Žemėje. Dideli valgomosios druskos klodai slūgso buvusios SSRS teritorijoje (Brianskas-Bachmačius, Ileckas prie Orenburgo, Usolė prie Permės, Sibiras; druskinguose ežeruose – Eltono (26% NaCl), Baskunčiako, JAV (Teksaso valstija, Nju Meksikas, Oklahoma, Kanzasas ir kt.), Austrijoje. Mirabilitas, tenarditas sutinkamas Kara-Bogazgoloje, Sibire, JAV (vakarinės valstijos), Sicilijos saloje, Ispanijoje, Šiaurės Afrikoje. Salietros klodai yra Pietų Amerikoje (Peru, Čilė). Didžiulės mineralo Na2CO3·NaHCO3·2H2O atsargos yra Šiaurės Afrikoje (Šiaurės vakarai nuo Kairo, Alžyras, Sudanas, Libanas), Armėnijoje, Sibire, JAV (Nevados ir Kalifornijos valstijos) ir kitur. GAVIMAS Nepaisant H. Devio atradimo, labaratorijose natris iki 1824 metų buvo retenybė, kol Erstedas nustatė, kad gryną aliuminį galima gauti, redukuojant aliuminio chloridą natriu. Nuo to laiko natrio gavimo technologinių procesų vystymasis tiesiogiai priklausė nuo aliuminio gavimo pramonės vystymosi. Tačiau vėliau aliuminio redukavimui imta naudoti kalį, ir natrio gamyba vėl sumažėjo. Tik po 32 metų A. S. Devilis ir R. Bunzenas įrodė, kad aliuminio gamyboje vis dėl to geriau naudoti natrį, negu kalį. Pagal Devilio metodą natris buvo gaunamas redukuojant sodą anglimi. Kastneris (Castner) 1886 m. šį procesą patobulino, bet po kelių mėnesių amerikietis Holas (Holl) ir prancūzas Eru (Erout) pasiūlė elektrolitinį aliuminio gavimo būdą. Taigi, natrio poreikis rinkoje vėl krito. Tam, kad periodinės elementų lentelės elementas N0 11 vėl grįžtų į gamybines sferas, reikėjo mažiausiai dviejų dalykų: 1) naujų panaudojimo sričių, kurioms būtinai reiklingas natris, ir 2) efektyvių pigaus natrio gavimo būdų. Kastneris 1890 m. patobulino elektrolitinį natrio gavimo iš kaustinės sodos procesą, o 1895 m. Niujorko valstijoje buvo pastatyta gamykla, gaminanti šiuo metodu natrį. Šiuolaikinį natrio gavimo iš išlydyto natrio chlorido procesą pasiūlė Daunsas (Downs) su bendraautoriais. Vieno kilogramo natrio kaina nukrito nuo 4,5$ 1890 m. iki 0,35$ 1953 metais. Tokiu būdu, natris tapo pigiu metalu, o tuo pačiu ir nebrangia žaliava chemijos pramonėje. Jo gamyba nepaliaujamai augo. Taip pvz., pagal Devilio būdą 1885 m. buvo gaminama 5500-6000 kg per metus, Kastnerio – 1888-1900 m. apie 150 t per metus. 1913 metais Europoje jau buvo gaminama 4200 t, o JAV – 1800 t natrio per metus. Pasaulyje 1927 m. buvo gaminama 27 tūkst. tonų natrio. Antrojo pasaulinio karo metais natrio gamyba JAV žymiai išaugo dėl jo panaudojimo natrio cianido ir tetraetilšvino gamybai. Šiuo metu JAV gaminama virš 100 tūkst. tonų natrio per metus, pasaulyje ~200 tūkst. tonų. Gavimo būdai. Yra daug metalinio natrio gavimo iš jo junginių būdų. Ankstesniuose procesuose jo gamybai buvo naudojamas natrio šarmas; tuo tarpu šiuolaikinėje gamyboje daugiausiai naudojamas natrio chloridas. Natris gali būti gaunamas veikiant jo druskas anglimi ar kitais reduktoriais prie temperatūrų, viršijančių jo lydimosi temperatūrą (termocheminės redukcijos procesai) arba elektrolizės būdu. Terminės redukcijos procesai. Gmelino (Gmelin) žinyne nurodoma, kad šiuo metodu natris gali būti gaunamas praktiškai iš bet kurio jo junginio. Natrio karbonatą galima redukuoti medžio anglimi arba koksu, sumaišytu su geležimi; sidabru, aliuminiu arba magniu. Aukštesnėse temperatūrose aliuminis, magnis, kalcis, kalcio hidridas, silicidas ar kalcio karbidas redukuoja natrio chloridą iki metalo. Susmulkinta geležis, ferosilicis, kalcio karbidas ir koksas redukuoja natrį iš išlydito natrio hidroksido. Pagal Gmeliną, natrio silikatas, sulfidas, sulfatas ir cianidas aukštoje temperatūroje irgi gali būti redukuoti iki metalo. Pramoninę reikšmę turi natrio karbonato (kalcinuotos sodos) redukcijos procesas, reduktoriumi naudojant anglį. Procesas vyksta pagal sumarinę reakciją: Na2CO3 + 2C ® 2Na + 3CO(DH0298=231 kcal/g·mol). Reakcija stadijinė: Na2CO3 ® Na2O + CO2 CO2 + C = 2CO Na2O + C ® 2Na + CO Technologinio proceso aprašymą galima rasti specialioje literatūroje. Patentuose siūloma kalcinuotos sodos reakciją vykdyti su anglimi, ištirpdyta išlydytoje geležyje, naudoti medžio anglį ar vykdyti procesą esant sumažintam slėgiui, panaudojant vakuminius siurblius. Natrio karbonato redukcijos procesas 1100°C temperatūroje vykdomas, greitai šaldant gautus natrio garus iki temperatūros, žemesnės už 700°C. Paminėtinas apie 30 metų naudotas Devilio (H. Deville) procesas, panaudojantis natrio karbonato, medžio anglies ir kalkių mišinį, ir Dou (Dow) natrio gavimo procesas, distiliuojant išlydytą natrio karbonato ir anglies mišinį. Kastnerio procesas – vienas iš svarbiausių termocheminių kaustinės sodos (natrio hifroksido) redukcijos procesų. Tai patobulintas Devilio procesas, kuriam charakteringas geresnis reaguojančių medžiagų kontaktas, o pats procesas vyksta prie žemesnių temperatūrų pagal reakciją: 6NaOH + FeC2 ® 2Na2CO3 + Fe + 3H2 + 2Na. Kituose technologiniuose prcesuose geležies karbidas 1000°C redukuoja natrio hidroksidą pagal lygtį: 3NaOH + FeC2 ® 3Na + Fe + 3/2H2 + CO + CO2 . Metalinio natrio gavimui iš natrio hidroksido naudojami įvairūs reduktoriai – grynas kalcio karbidas, jo mišinys su natrio chloridu arba gryna anglis 4NaOH + 2C ® Na2CO3 + 2Na + 2H2 + CO . Termocheminiuose natrio gavimo redukcijos procesuose plačiai naudojamas natrio chloridas arba kiti jo halogeniniai junginiai. Šių junginių redukcija vyksta pagal lygtis: 2NaCl + CaC2 ® CaCl2 + 2Na + 2C 6NaF + Al ® 3Na + AlNa3F6 2NaCl + CaO + C ® 2Na + CaCl2 + CO 2NaCl + Pb ® PbCl2 + 2Na. Kituose technologiniuose procesuose įvairių junginių redukcija vyksta pagal lygtis: Na2B4O7 + 7C ® 2Na + 7CO + 4B Na2S + CaO + C ® 2Na + CaS + CO Na2S + CaC2 ® 2Na + CaS + 2C 2NaCN + Fe ® 2Na + FeC2 + N2 3Na2O2 + 2C ® 2Na2CO3 + 2Na 7Na2O2 + 2CaC2 ® 2CaO + 4Na2CO3 + 6Na 2NaNO2 + 3CaC2 + 6NaF ® 2NaCN + 4CO + 3CaF2 + 6Na 2NaNO2 + 3CaCl2 + 3Na2S ® 2NaCN + 4CO + CaS + 6Na. Natrio gavimas elektrolizės būdu. Šiuo metu tai pagrindinis pramoninis natrio gavimo būdas. Natris gaunamas, elektrolizuojant sulydytą natrio hidroksidą arba natrio chloridą. Elektrolizės metu prie geležies ar nikelio katodų išsiskiria natris, o ant grafito anodo, priklausomai nuo elektrolizuojamų medžiagų, išsiskiria deguonis arba chloras. Katodas 4Na+ + 4e ® 4Na Anodas 4OH– – 4e ® 2H2O + O2 4Cl– – 4e ® 2Cl2 Pirmą kartą elektrolizės būdu natris buvo gautas iš natrio hidroksido (Kastnerio metodas). Šiuo atveju ant anodo vyksta 1) reakcija. Vandeniui difundavus per vonią, ant katodo vyksta antrinė reakcija su natriu: 2Na + 2H2O ® 2NaOH + H2 . Sumarinė reakcija: 4NaOH ® 2Na + 2NaOH + H2 + O2 . Kadangi vanduo reaguoja su puse susidariusio natrio, jo išeiga praktikoje neviršija 50% teorinės reikšmės, o kitos pašalinės reakcijos išeigą gali sumažinti ir dar daugiau. Kastnerio elektrolizeris pavaizduotas piešinyje. Aparatas sudarytas iš apšildomo geležinio indo, kuriame yra išlydytas natrio hidroksidas. Indo apačioje yra geležinis strypas (katodas), kurį gaubia geležinis cilindras (anodas). Elektrolizeryje dar yra trumpas geležinis cilindras, pagamintas iš geležinio tinklo. Pastarasis gaubia viršutinę, pastorintąją katodo dalį ir apsaugo, kad susidaręs ant katodo metalinis natris nepatektų ant anodo. Dėl mažo savo lyginamojo svorio, susidaręs metalinis natris pašalinamas nuo išlydytos masės viršaus. Ant anodo kraunasi OH– jonai ir skiriasi deguonis bei vanduo. Didelė vandens dalis išgaruoja. Dalį vandens skaldo srovė, todėl, be natrio, ant katodo skiriasi ir vandenilis. Išeidamas pro vidinio cilindro dangtį, vandenilis užsidega. Sunkiosios išlydytos masės priemaišos kaupiasi apatinėje elektrolizerio dalyje. Žemiausiuose sluoksniuose kaupiasi atšalęs natrio hidroksidas. Kaip pažymėjo pats Kastneris, svarbu, kad elektrolizerio temperatūra kiek galima mažiau viršytų natrio lydimosi temperatūrą. Priešingu atveju natris maišosi su išlydyta mase ir, veikiamas deguonies, oksiduojasi. Kastnerio elektrolizeris nuo 1891 metų iki 1920 metų buvo žymiai patobulintas, nes tai buvo vienintelis procesas, turintis praktinę reikšmę. Kastnerio elektrolizeris yra paprastos konstrukcijos, elektrolizės procesas vyksta prie žemų (320-330°C) temperatūrų. Pagrindinis jo trūkumas – naudojama palyginus brangi žaliava – švarus natrio hidroksidas. Todėl pastarąjį išstūmė kiti procesai, panaudojantys natrio chloridą. Natrio chlorido elektrolizės procesai. Dar Faradėjus 1883 m. atliko eksperimentus, siekdamas gauti natrį elektrolizės būdu iš natrio chlorido. Literatūroje pateikiama visa eilė patentų apie natrio chlorido elektrolizę. Viena iš labiausiai pavykusių elektrolizerių konstrukcijų – Daunso elektrolizės kamera. Daunso technologinio proceso privalumai – naudojama pigi žaliava (NaCl), susidaro vertingas šalutinis produktas (Cl2 dujos) ir pasiekiama didelė natrio išeiga pagal srovę. Be to sėkmingai išspręsta įrenginių apsaugos nuo korozijos problema. Kadangi metalinis natris aukštose temperatūrose tirpsta išlydytame natrio chloride, būtina kiek galima daugiau sumažinti jo lydimosi temperatūrą. Beje, dėl šios priežasties ilgą laiką nepavyko išskirti natrio iš išlydyto natrio chlorido. Pasirodė, kad pridėjus kalcio chlorido, lydymosi temperatūrą galima žymiai sumažinti – nuo 800°C iki ~600°C. Elektrolizės vonios lydimosi temperatūros sumažinimui įvairūs autoriai siūlė prie natrio chlorido pridėti CaCl2; KCl ir žemės šarminių metalų; KCl ir Na2CO3; KCl ir NaF, KF; NaF ir žemės šarminių metalų chloridų, Na2CO3 . Norint gauti gerus rezultatus, elektrolizinant išlydytą NaCl, būtina: anodas turi būti pagamintas iš grafito numatyti būdus chlorui pašalinti iš anodinės erdvės katodas turi būti metalinis, pageidautina iš geležies numatyti būdus, kaip pašalinti natrį iš katodinės erdvės ir apsaugoti jį nuo galimos sąveikos su oksidatoriais visos elektrolizerio dalys privalo būti atsparios ugniai tarp elektrodinių polių lydynyje neturi būti jokių metalinių dalelių. Daunso elektrolizės kamera pavaizduota piešinyje: Kamera sudaryta iš akmeninio indo, kuriame yra grafitinis strypas A (anodas) ir iš šonų geležiniai katodai K. Anodą dengia geležnis gaubtas 1 ant jo tinklelis 2, skiriantis anodinę ir katodinę erdves. Chloridų mišinys išlydomas elektros pagalba. Išsiskyręs ant katodo natris kyla į viršų ir geležiniais vamzdžiais 3,4 patenka į surinkėją 5. Tokiu būdu skystas natris apsaugomas nuo oro poveikio. Išlydytas natris turi iki 1% kalcio. Lėtai aušinant metalą, kalcio kiekis sumažinamas iki šimtųjų procento dalių – gaunamas techninės kvalifikacijos švarumo elementas. Toliau filtruojant 105-110°C temperatūroje, gaunamo natrio švarumas siekia 99,9% . Gaunamas chloras yra švarus, jį galima suslėgti ir panaudoti. Elektrolizei naudojama ~7V įtampa, metalo išeiga pagal srovę siekia 80-85% . Vienam kilogramui natrio gauti reikalinga apie 11kW val energijos. Paminėtini Akerio (Acker C.), Aškrofto (Ashkroft E.), Mak-Nito (Mc Nitt R.), Danielio (Daneel H.), Siuardo (Seward C.O.), Cibo (Ciba) ir kitų autorių sukurti elektrolizeriai natriui gauti. Elektrolizės būdu natrį galima gauti iš išlydyto natrio karbonato, natrio tetraborato, natrio nitrato, natrio cianido, natrio sulfato ir natrio sulfido arba dvigubos elektrolizės metodu iš nevandeninių jo druskų tirpalų (gautas natrio junginys arba jo amalgama antrą kartą elektrolizinama). FIZINĖS SAVYBĖS Gamtoje sutinkamas tik vienas stabilus izotopas Na23. Bombarduojant natrį neutronais, susidaro b aktyvus izotopas Na24 (skilimo pusperiodis T1/2=15,06 val). Iš viso žinomi 6 radioaktyvūs izotopai. Na22 skildamas spinduliuoja pozitronus – teigiamas daleles, kurio masė artima ellektrono masei (T1/2=2,58 metų). Simbolis Na Atominis numeris 11 Atominė masė 23 (tiksli 22,989768) Masės numeris 23 Protonų skaičius 11 Elektronų skaičius 11 Neutronų skaičius 12 Išorinių e konfigūracija 3s1 Atominis radiusas, Å 1,86 Jono radiusas, Å 0,92 Jonizacijos energija, eV Na0 ® Na+ ® Na2+ ® Na3+ ® Na4+ 5,09; 46,65; 71,3; 99,0; Spektrinės linijos, Å (intesyvi geltona) 5890; 5896 Elemento tipas baltas metalas Kristalinės gardelės tipas kūbinė centruota Būvis kambario temperatūroje kietas Tankis, Kg/m3 971 (H2O=1000) Kietumas 0,5 (deimantas=10) Virimo temperatūra, K 1156,1 (883°C) Lydimosi temperatūra, K 370,96 (97,96°C) Šiluminė talpa 0,29 (H2O=1) Specifinis šiluminis laidumas, W/m·K 1230 Elektrinis laidumas 21 (Hg=1) Specifinė varža, W m 4,3·10-8 Normalusis elektrodo potencialas, V –2,71 Magnetinės savybės paramagnetikas Dielektrinė skvarbtis 60 Temperatūrinės priklausomybės Tankio, Kg/m3 (kieto) dt=0,9725–0,0002011t–0,00000015t2 (skysto) dt=0,9490–0,000223t–0,0000000175t2 Klampumo, puazai (skysto) lgh= –1,09127+382(t+313) Paviršiaus įtempimo, din/cm g=202–0,1t Šiluminio laidumo, kal/cm·s·laipsn°C (kieto) k=0,324–0,00040t (0–97,83°) (skysto) k=0,2166–0,000116t (iki 500°) Elektrinės varžos, mW·cm (kieto) r=4,777+0,01932+0,00004t2 (0-97,83°) (skysto) r=6,225+0,0345t (iki 400°) Dujiniame būvyje (purpurinė spalva) natris sudarytas, daugiausia, iš vienatomių molekulių. Dimerų Na2 skaičius didėja, didėjant temperatūrai (600°K–0,008 dalis Na2; 650°K–0,013; 700°K–0,019; 750°K–0,025). Natrio dujų slėgis labai mažas (mm Hg stulp.)–1,199·10-7 (100°C); 3,958 (500°C); 1998 (1000°C). CHEMINĖS SAVYBĖS Išorinio elektroninio sluoksnio struktūra leidžia manyti, kad natris neturėtų prisijungti elektronų. Kita vertus, vienintelio elektrono atidavimas turėtų vykti gana lengvai, susidarant vienvalenčiam katijonui. Natris iš tiesų lengvai atiduoda savo valentinius elektronus (po vieną vienam atomui) ir pasižymi ryškiomis redukcinėmis savybėmis. Natrio hidroksidas – stipri bazė. Taigi, natris turi pilną kompleksą metalams būdingų cheminių savybių. Tai patvirtina ir fizinės šio elemento savybės. Cheminis natrio aktyvumas didelis. Kai kurios natrio reakcijos su neorganinėmis medžiagomis pateikiamos lentelėje: Elementas Cheminė saveika su Na Deguonis reaguoja gana greitai Azotas nereaguoja Vandenilis greita reakcija, temperatūra virš 300°C Vanduo greita reakcija Anglis reaguoja prie 800-900°C Amoniakas lėtai reaguoja Anglies monoksidas nesant NH3 nereaguoja Anglies dioksidas reaguoja Halogenai: Fluoras užsidega Chloras reaguoja Bromas lėta reakcija (praktiškai nevyksta) Jodas nereguoja Sieros rūgštis šalta koncentruota intensyvi reakcija šalta praskiesta labai intensyvi reakcija Natrio reakcijoms su specifinėmis neorganinėmis medžiagomis skirta daug apžalginių straipsnių. Ypač gausiai tyrinėtos natrio reakcijos skystame amoniajake. Reakcija su vandeniu. Kambario temperatūroje natris energingai reaguoja su vandeniu, susidarant natrio hidroksidui ir skiriantis vandeniliui. Reakcijos metu išsiskyrusios šilumos užtenka natriui išlydyti. Esant dideliam natrio paviršiaus kontaktui su vandeniu, reakcija lydima sprogimo. Natris taip pat reaguoja su paprastu ledu, o vandenilio skyrimąsis nustoja, tik atšaldžius ledą iki -200°C. Kai kurių autorių duomenimis, reaguoti su vandeniu natris pradeda prie -80°C. Natrio reakcijos su vandeniu: Na + H2O ® NaOH + 1/2H2 šiluma DH0298= –33,67 kcal; skysto natrio su vandens garais –45,7 kcal. Natrio reakcija su vandeniu plačiai taikoma praktikoje. Taip pvz., su natriu pašalinami drėgmės pėdsakai iš transformatorinių tepalų. Geri rezultatai gauti džiovinant natriu propilo, izoamilo, fenoksibutilo ir metilo spiritus. Natris gali būti panaudojamas vandens šalinimui iš piperidino ir kitų aminų. Drėgmės šalinimui iš reagentų naudojami ir natrio-kalio lydiniai. Paskirsčius natrį kietame nešėjuje, patogu juo sausinti dujas. Įdomu pažymėti, kad 1920 metais Vokietijoje vietoje degtukų buvo gaminamos natrio lazdelės. Jos buvo pardavinėjamos sausai įpakuotos. Norint įdegti ugnį, reikėjo atkirsti nedidelį gabalėlį šių lazdelių ir patalpinti ant sudrėkinto vandeniu popieriaus lapo. Natrio reakcijos su vandeniu pagalba buvo gauti vandenilio izotopai. Reakcija su deguonimi. Drėgname ore metalinis natris greitai praranda savo sidabrinę spalvą ir tampa blankiai pilku, padengtu oksido plėvele. Ši plėvelė sugeria drėgmę ir anglies dioksidą iš oro, susidarant natrio hidroksidui ir karbonatui. Kaitinamas sausame ore natris užsidega, kai temperatūra artima jo virimo temperatūrai. Vykstant oro ar deguonies sąveikai su natriu, susidaro jo oksido ir peroksido mišinys. Esant žemesnei nei 160°C temperatūrai ir nepakankant deguonies, susidaro tik natrio oksidas. Ilgą laiką buvo manoma, kad susidaro tik du deguoniniai natrio junginiai – oksidas Na2O ir peroksidas Na2O2. Vėliau nustatyta, kad egzistuoja ir peroksidas NaO2. Be to, egzistuoja ir natrio ozonidas NaO3. Išlydytas natris lengvai dega paprastoje atmosferoje – susidaro tiršti oksido dūmai. Iš pradžių, matyt, susidaro natrio peroksidas, kuris reaguoja su metalinio natrio pertekliumi susidarant oksidui. Natrio reakcijų termodinamika su deguonimi pateikiama žemiau: 2Na(k) + 1/2O2(d) ® Na2O(k) DH0298= –100,7 kcal 2Na(sk) + 1/2O2(d) ® Na2O(k) DH0400= –104,2 kcal 2Na(k) + O2(d) ® Na2O2(k) DH0298= –120,6 kcal . Natrio ozonidas gaunamas, leidžiant ozoną per natrio tirpalą skystame amoniake. Susidaro oranžinės ar tamsios spalvos nuosėdos. Kai kurių autorių nuomone, natris savaime užsidega ozono atmosferoje. Praktinį pritaikymą turi tik natrio peroksidas (stiprus oksidatorius). Iš pradžių jis buvo naudojimas šiaudinių skrybėlių blukinimui, dabartiniu metu naudojamas celiuliozės masės balinimui popieriaus gamyboje, kadangi jam reaguojant su vandeniu susidaro natrio peroksidas: Na2O2 + 2H2O ® 2NaOH + H2O2 + 34 kcal . Žinomi sekantys natrio peroksido junginiai: Na2O2; Na2O2·H2O; Na2O2·2H2O; Na2O2·8H2O . Natrio peroksidas naudojamas izoliuojančiose dujokaukėse ir povandeniniuose laivuose kaip deguonies šaltinis: 2Na2O2 + 2CO2 ® 2Na2CO3 + O2 + 111kcal . Labaratorijose Na2O2 naudojamas stipriu oksidatoriumi, lydant metalus. Reakcija su vandeniliu. Natris pradeda absorbuoti vandenilį maždaug 200°C temperatūroje, o 300-400°C temperatūroje proceso greitis suintensyvėja. Jei nesiimama specialių priemonių natrio dispergavimui, aplink jį susidaro kieto natrio hidrido plėvelė ir reakcija sustoja. Natrio hidrido gavimo reakcija yra grįžtama: 2Na + H2 = 2NaH. Susidarymo šiluma 13,8-15,69 kcal/mol . Kadangi reakcija grįžtama, norint gauti produktą, vandenilio slėgis turi būti didesnis už natrio hidrido disociacijos slėgį. Natrio hidridas yra stiprus reduktorius, ypač aukštesnėse temperatūrose. Jis reaguoja su daugeliu oksidatorių, halogenais ar įvairiais jų kovalentiniais junginiais. Natrio hidridas redukuoja sieros rūgštį iki sieros vandenilio ir laisvos sieros. Metalurgijoje vartojamas oksidinių plėvelių pašalinimui nuo paviršiaus. Kasmet sunaudojama virš 1000 t natrio hidrido. Reakcijos su halogenais. Natrio sugebėjimas reaguoti su halogenais nevienodas. Susilietęs drėgnas natris ir fluoras užsidega. Fluoro atmosferoje natris pasidengia fluorido plėvele. Su chloru natris nereaguoja –80°C temperatūroje. Su sausu chloru kambario temperatūroje natris reaguoja silpnai, tačiau išlydytas – dega chloro atmosferoje susidarant natrio chloridui. Natrio reakcija su bromu vyksta tik ant paviršiaus ir 300°C temperatūroje. Kai kurie autoriai nurodo, kad jungiantis šiems elementams, gali įvykti net sprogimas. Lydimas jodas ir natris nereaguoja, bet 300-360°C temperatūroje gali vykti paviršinė reakcija. Termodinaminės natrio reakcijos su halogenais: Na(k) + 1/2F2(d) ® NaF(k) DH0298= –136,0 kcal Na(k) + 1/2Cl2(d) ® NaCl(k) DH0298= –98,23 kcal Na(k) + 1/2Br2(sk) ® NaBr(k) DH0298= –86,03 kcal Na(k) + 1/2J2(k) ® NaJ(k) DH0298= –68,84 kcal . Reakcijos su amoniaku. Natrio reakcija su amoniaku, esant kokso, kurios metu susidaro natrio cianidas, yra viena iš svarbiausių pramonėje šio metalo reakcijų (žr. skyr. “natrio junginiai ir jų panaudojimas”). Tiesa, pastaruoju metu ciano vandenilio rūgštis gaunama tiesioginės sintezės metu, ir šios reakcijos reikšmingumas šiek tiek sumažėjo. Tirpdamas skystame amoniake, natris disocijuoja į teigiamus metalo jonus ir elektronus, kurie yra sugaudomi tirpiklyje. Natrio kompleksiniai junginiai su metalais yra aprašyti daugelio autorių specialioje literatūroje. Žemose temperatūrose labiausiai koncentruoti natrio tirpalai yra sudaryti iš dviejų fazių: praskiestos-tamsiai mėlynos dugne ir virš jos koncentruotos-bornzos spalvos. Natrio tirpalai skystame amoniake skirstomi į dvi kategorijas – katalizinius ir nekatalizinius. Aktyvūs metalai, tokie kaip geležis, kobaltas ir nikelis skaldo tamsiai mėlyną natrio tirpalą amoniake – susidaro natrio amidas. Šia reakcija pagrįstas vienas iš pramoninių natrio amido NaNH2 gamybos būdų. Didžiausi amido kiekiai pagaminami tiesioginės amoniako ir natrio sąveikos metu: 2Na + 2NH3 ® NaNH2 + H2 . Reakcija gali būti vykdoma trimis metodais – esant aukštai 300-400°C (išlydytas natris ir dujinis amoniakas), vidutinei 140-170°C (skystas natris ir dujinis amoniakas) ir žemai -30°C (kietas natris ir kietas amoniakas) temperatūroms. Išlydytas NaNH2 pasižymi dideliu reakcingumu. Jis reaguoja su anglies monoksidu, susidarant natrio cianidui, su anglies dioksidu – susidaro natrio ciano amidas, natrio karbonatas ir natrio cianatas. Išlydytas natrio amidas reaguoja su stiklu. Natrio amidas naudojamas sintetinio dažo indigo, vitamino A ir kitų organinių junginių sintezėje. Kitos reakcijos. Siera , selenas ir teliūras energingai reaguoja su natriu, susidarant sulfidams (Na2S, Na2S2, Na2S3, Na2S4 ir Na2S5), selenidams ir teliūridams. Kambario temperatūroje natris nereaguoja su anglimi, tačiau 800-900°C temperatūroje natrio garai su anglimi sudaro karbidus Na2C2. Natrio junginiai su grafitu išreiškiami formulėmis NaC8 ir NaC16. Natrio sąveika su azotu normaliomis salygomis nevyksta. Yra duomenų, kad iki 300°C sausas azotas natrio atžvilgiu išlieka inertiškas. Aukštesnėse temperatūrose susidaro du reakcijos produktai: natrio azidas NaN3 ir natrio nitridas Na3N. Šildant natrį su fosforu be oro, susidaro fosfidas. Oro astmosferoje reakcija lydima liepsnos – susidaro natrio fosfatas. Reaguojant natriui su fosforu, gali būti gaunami sekantys junginiai: NaP3, Na2P5 ir Na3P . Raudonasis fosforas reaguoja su natriu skystame amoniake; susidaro NaP3·3NH3. Šildant su selenu, susidaro įvairūs natrio selenidai: Na2Se, Na2Se2, Na2Se3, Na2Se4 ir Na2Se6. Natris redukuoja daugelį metalų (išskyrus Al, Mg ir šarminius žemės metalus) iš jų oksidų. Pastaruoju metu padidintas dėmesys skiriamas sunkiai besilydančių metalų (pvz., titano, cirkonio ir kt.) gavimo tyrinėjimams, panaudojant reduktoriumi natrį. Metalinis natris energingai reaguoja su daugeliu neorganinių halogeninių junginių. Tokių reakcijų metu šiuolaikinėje miltelių metalurgijoje gaunama geležis, cirkonis, berilis ir kt. metalai. Reakcija su geležimi vyksta pagal lygtį: FeCl3 + 3Na ® Fe + NaCl . Kai kurios reakcijos su organiniais junginiais. Natris yra plačiai naudojamas organinėje sintezėje. Natrio panaudojimas organinėse reakcijose yra plačiai aprašytas specialiuose apžvalginiuose darbuose. Svarbiausia dabartiniu metu pramoninę reikšmę vis dar turi natrio panaudojimas tetraetilšvino gamybai, kuris pasižymi antidetonacinėmis motorinio kuro savybėmis. Pagrindinė reakcija yra 4PbNa + 4C2H5Cl ® (C2H5)4Pb + 3Pb + NaCl . Kitos svarbesnės natrio reakcijos ir susidarę produktai pateikiami lentelėje: Reakcija Produktas Esterių susidarymo iš alkoholiatų C6H5CH2OC2H5 Fitigo sintezė (alkilaromatinių angliavandenilių gavimas) C6H5C2H5 Alkilinimo (aukštesniųjų šakotųjų spiritų ir eterių gavimas) CH3COCH(C2H5)CO2C2H5 Kondensacijos su alkoholiatais (esterių C2H5CH(CO2C2H5) 2 gavimas) CH3COCH2CO2C2H5 CH3COCH2COCO2C2H5 Perkino sintezė (cinamono rūgščių gavimo) C6H5CH=CHCO2H Pinakolo sintezė pinakolas Orto skruzdžių eterio sintezė HC(OC2H5)3 Ketonų gavimo iš rūgščių druskų sausos (CH3) 2CO destiliacijos būdu (C6H5)2CO Praktinę reikšmę turi natrio reakcijos su alkoholiais, kurių metu gaunami alkoholiatai vėliau panaudojami įvairių esterių sintezei. Reaguodamas natris su kai kuriais polihalogeniniais angliavandeniliais sprogsta. Pvz., natrio-kalio lydinio su anglies tetrachloridu mišinio jautrumas sprogimui yra 150-200 kartų didesnis, negu sprogstamojo gyvsidabrio. Natrio ir kalio sprogimo reakcija su chloroformu panaudojama bomboje. Literatūroje galima sutikti ir kitas sprogstamasias sistemas su natriu. NATRIO PANAUDOJIMAS Metalinis natris (grynas ar jo lydiniai su kitais metalais) plačiai panaudojamas pramonėje. Ilgą laiką dižiausias natrio kiekis (lydinys 10% Na ir 90% Pb) buvo sunaudojamas tetraetilšvino ir įvairių esterių gamyboje bei natrio cianido gamyboje. Kadangi metalinis natris lydosi prie 98°C temperatūros, o verda tik 883°C, jis plačiai panaudojamas šilumos nešėju aviacijos variklių vožtuvuose, liejimo mašinų plunžerių aušinimui, o taip pat eilėje cheminių procesų, užtiktrinant tolygų šildymą 450-650°C temperatūroje. Dėka aukštos virimo temperatūros, mažo neutronų sugaudymo radiuso ir didelio šilumos atidavimo koeficiento natris panaudojamas skystu šilumos nešėju branduolinėje energetikoje. Pvz., amerikietiškose atominėse povandeninėse valtyse panaudojami energetiniai įrenginiai su natrio kontūrais. Reaktoriaus viduje išsiskyrusi šiluma įkaitina natrį, kuris cirkuliuoja tarp reaktoriaus ir garo generatoriaus ir aušdamas gamina vandens garus, panaudojamus garo turbinai sukti. -Metalurgijjoje natris naudojamas įvairiems metalams redukuoti ir jų junginiams gauti. Pvz., švino lydinys, turintis 0,58% Na; 0,04% Li; 0,73% Ca yra labai kietas ir naudojamas vagonų ašių guoliams gaminti. Charakteringas natrio garų švytėjimas naudojamas specialiuose šviestuvuose. Pažymėtina, kad paleidžiant kosminį palydovą į Mėnulį 1959 m. buvo išleistas natrio dujų debesis, pagal kurio švytėjimą buvo tikslinama pastarojo trajektorija. Organinėje sintezėje natrio panaudojimas prasidėjo nuo kondensacijos reakcijų – 1850 m. Viljamsonas gavo eterius. Viurcas 1885 m. sintezavo 2,5-dimetilheksaną iš 2-etilbrompropano ir natrio, o Fitigas 1863 m. šį principą panaudodo alkil aromatinių angliavandenilių sintezėje. Kitas klasikinis pavyzdys – Klaizeno 1863 m. kondensacijos reakcija, kurios metu susintetintas acto rūgšties etilo esteris. Natrio organiniai junginiai yra daugelio vaistinių preparatų sudėtyje (norsulfazolas, natrio salicilatas ir kt.), fiziologiniuose tirpaluose. Radioaktyvus natrio izotopas Na24 naudojamas medicininėje diagnostikoje ir kai kurių leukemijos formų gydimui. Analitinis nustatymas. Natrio jonus tirpale nustatyti sudėtinga, visų pirma, dėl didelio daugumos druskų tirpumo. Kokybiškai natris dažnai nustatomas pagal charakteringą geltonos liepsnos spalvą. Natrį nustatyti galima ir mikroskopo pagalba pagal nusodintų trietanol aminodinitrocikloheksafenoliatų kristalų formą. Kiekybinis natrio nustatymas svorio metodu grindžiamas jo nusodinimu dvigubomis uranilo druskomis. Kiekybiškai natris nustatomas šiais metodais: uranilacetatiniu (nusodinamas NaZn(UO2)3(CH3COO)9·6H2O) magnio uranilacetatiniu (nusodinamas NaMg(UO2)3(CH3COO)9·6H2O ) modifikuotu uranilacetatiniu centrifūginiu poliarografiškai redukuojant uranilo joną panaudojant dihidroksi vynoakmens rūgštį panaudojant kalio-cezio-bismuto nitratą radiometriškai chromotografiškai liepsnos fotometrijos nefeliometriniu mikroanalizės kalorimetriniu spektrometriniais (rentgeno struktūr. analizė, BMR ir kt.) Saugumo technika. Dirbant su natriu, būtina laikytis tam tikrų saugumo priemonių. Natris laikomas po inertinio skysčio sluoksniu (žibalas ir pan.) pervežamas tik uždaruose induose ir specialiai įrengtuose cisternose. Darbo su natriu metu reikia naudoti specialius rūbus, gumines pirštines, akinius ar apsaugines kaukes. Darbo vietose privalo būti priešgaisrinis inventorius, o gesintuvai užpildyti sausu natrio chloridu, natrio karbonatu, grafitu ir pan. Ugnį gesinti vandeniu, esant natrio, kategoriškai draudžiama, nes gali įvykti sprogimas. NATRIO JUNGINIAI, JŲ GAVIMAS, SAVYBĖS IR PANAUDOJIMAS Natrio junginiai labai paplitę gamtoje. Kaip minėta, jie randami natrio chlorido, natrio nitraro, natrio sulfato, įvairių lauko špatų ar kitokių mineralų pavidalu. Praktikoje plačiai panaudojamos šio metalo druskos. Junginiai. Natrio jonas yra bespalvis, teigiamas, vienvalentis. Beveik visos druskos tirpsta vandenyje. Silpnųjų rugščių druskų tirpalai dėl hidrolizės turi šarminę reakciją. Natrio hidridas (žr. skyr. “reakcija su vandeniliu”). Natrio oksidas, peroksidas (žr. skyr. “reakcija su deguonimi”). Natrio hidroksidas. NaOH – balta, kristalinė, trapi ir labai higroskopinė medžiaga, kurios lyginamasis svoris 2,13 (g/cm3). Laboratorijose naudojama lazdelių, žirnelių arba žvynelių pavidale. Natrio hidroksidas lydosi, o prie aukštesnių temperatūrų išgaruoja. Tirpinant vandenyje, susidaro įvairūs hidratai (nuo vienos iki septynių molekulių vandens) ir išsiskiria dideli šilumos kiekiai. Toks tirpalas vadinamas natrio šarmu . Jis sugeria iš oro anglies dioksidą ir virsta karbonatu: 2NaOH + CO2 ® Na2CO3 + H2O . Natrio hidroksido tirpumas: 0 20 100 °C 42 109 342 % (g NaOH 100g H2O) Natrio hidroksidas ardo odą, audinius, popierių ir kitas organines medžiagas. Gavimas. NaOH gaunamas, elektrolizuojant valgomosios druskos NaCl vandeninius tirpalus. Prie geležinio katodo skiriasi vandenilis, o prie grafitinio anodo – chloras. Ant elektrodų vyksta sekančios reakcijos: Anodas Cl– – e ® 1/2Cl2 Katodas 1) H+ + e ® 1/2H 2) H2O = H+ + OH– 3) H2O + e ® 1/2H2 + OH– Iš pateiktų lygčių matyti, kad katodinės reakcijos mechanizmas sudėtingesnis, negu anodinės. Kadangi vandenilio išsiskyrimo viršvoltažis žymiai mažesnis už natrio, vandenilis skiriasi ant katodo. Dėka to, atsilaisvina atitinkamas kiekis hidroksilo jonų. Sumarinis katodinis procesas aprašomas lygtimi 3) . Pasišalinus iš tirpalo Cl– jonams, (dėl jų išsikrovimo ant anodo) tirpale susikaupia ekvivalentinis kiekis natrio jonų. Pastariesiems susijungus su OH– jonų pertekliumi katodinėje srityje, kaupiasi natrio hidroksidas. Svarbu, kad elektrolizės produktai negalėtų susimaišyti, nes laisvas chloras su natrio hidroksidu gali duoti natrio hipochloritą – NaOCl. Šiai reakcijai užkirsti siūlomi sekantys būdai: diafragminis, būgninis ir gyvsidabrinis. Plačiausiai naudojamas diafragminis būdas elektrolizerio sritims atskirti labiausiai paplitusiose Europoje Simenso-Biliterio kamerose. Literatūroje pateikiamas detalus įvairių konstrukcijų elektrolizerių aprašymas. Techninis natrio šarmas taip pat gaunamas virinant sodos tirpalą su gesintomis kalkėmis: Na2CO3 + Ca(OH)2 ® 2NaOH + CaCO3 . Reakcijai pasibaigus, tirpalas nupilamas nuo kalcio karbonato nuosėdų ir išgarinamas. Tokiu būdu gautas šarmas vadinamas “kaustine soda”. Natrio hidroksidas plačiai naudojamas technikoje muilui virti, dažų pramonėje, šilkui gaminti, naftos produktams valyti, farmacinių gaminių pramonėje, laboratorijose. Virinant šiaudus ar medieną su natrio šarmu, gaunama celiuliozė popieriaus pramonėje. Natrio chloridas – valgomoji druska, tirpi kristalinė medžiaga. Tirpumas mažai kinta nuo temperatūros. Kasamas iš žemės NaCl vadinamas akmens druska (halitas). Žinomiausios kasyklos yra Šiaurės Vokietijoje, Veličkoje (Lenkija), buvusioje SSRS (Užbaikalė, Solikamskas). Gavimas. Natrio chloridas gaunamas, pagrindinai, trimis būdais: 1) kalnakasybos būdu gautą halitą perdirbant ar išgarinant gamtinius tirpalus, 2) tirpdant po žeme ir išgarinant akmens druską, 3) iš sūriųjų jūros ir ežerų vandenų – garinant ar išsodinant šaldant NaCl iš tirpalų. Techniniams poreikiams NaCl daugiausia gaunamas pirmuoju būdu – šiuo atveju NaCl šalutinis produktas, gaunant kalio druskas. Akmens druska yra užteršta kalcio ir magnio sulfatais. Ekenominiais sumetimais natrio chlorido gavimui naudojama tik švari, turinti 98-99% NaCl, akmens druska. Labiau užteršta druska neišgaunama, o paliekama šachtoje. Valgomoji druska, kurios švarumui taikomi didžiausi reikalavimai, gaminama išgarinant natūralius ar dirbtinius druskingus tirpalus. Dabartiniu metu, daugeliu atveju, tirpalai persotinami akmens druska. Grynas natrio chloridas ne higroskopinis – tik priemaišos “padaro” šią druską drėgna. Natrio chloridas kristalinasi taisyklingų kūbų pavidale, specifinis svoris 2,17. Virš lydimosi temperatūros (801°C) pastebimai lakus. Valgomoji druska būtina gyvam organizmui, ypač dominuojant augalinės kilmės produktams mytybos racione. Todėl jos pridedama į galvijų maistą. Daug NaCl sunaudojama maisto pramonėje sūdymui, konservavimui. Medicinoje naudojamas fiziologinis druskos tirpalas – 0,9% NaCl. Didžiuliai NaCl kiekiai sunaudojami pramonėje beveik visų kitų natrio junginių gamybai. Tai svarbiausia žaliava chloro ir druskos rūgšties, sodos, natrio hidroksido ir kt. junginių gamybai. Pramonėje natrio chloridas naudojamas muilo ir organinių dažų išsūdymui, metalurginiuose procesuose, odų sūdymui, molinių dirbinių glazūravimui, sniego tirpimo pagreitinimui, šaldomųjų mišinių gamybai ir t.t. Natrio karbonatas. Na2CO3 – balti milteliai, kurių lyginamasis svoris 2,4-2,5, lydimosi temperatūra ~850°C. Jie gerai tirpsta vandenyje, tirpdami šyla, nes susidaro dekahidratas. Na2CO3 vadinamas kristaline ar skalbiamaja soda. Žinomi mono- ir hepta- hidratai. Nedideli sodos kiekiai randami gamtoje kai kurių ežerų vandenyje (Kalifornija, Sibiras). Ovenso ežere (Kalifornijos valstija) sodos kiekis vandenyje siekia 100 mln. tonų. Ežerų vandenyse be sodos yra hidrokarbonato. Kai kuriose vietose sutinkami dvigubi hidrokarbonato ir karbonato junginiai Na2CO3·NaHCO3, vadinami trona. Natrio karbonato yra kai kuriuose jūros augaluose. Prieš šimtą metų soda dažnai buvo gaunama iš jūros žolių pelenų. Gavimas. Dabartiniu metu ji gaminama vadinamuoju Solvėjaus (amoniakiniu) būdu iš NaCl. Į koncentruotą NaCl tirpalą slegiant leidžiamas amoniakas ir anglies dioksido dujos, kurios gaunamos kaitinant kalkakmenį: NaCl + NH3 + CO2 + H2O ® NaHCO3 + NH4Cl . Mažai tirpus NaHCO3 nusėda, o NH4Cl lieka tirpale. Kaitinant NaHCO3, gaunama bevandenė kalcinuota soda: 2NaHCO3 ® Na2CO3 + CO2 + H2O . Susidaręs NH4Cl kaitinamas su gesintomis kalkėmis: 2NH4Cl + Ca(OH)2 ® CaCl2 + 2H2O + 2NH3 . Regeneruotas amoniakas ir CO2 , gautas kaitinant NaHCO3 , gražinami į gamybą. Tokiu būdu sodą 1863 m. gavo belgas Solvėjus. Gaunama soda yra labai švari. Senesnis Leblano (1791 m.) metodas, pagal kurį akmens druska apdorojama sieros rūgštimi 2NaCl + H2SO4 ® Na2SO4 + 2HCl . Gautas natrio sulfatas sumaišomas su kalcio karbonatu bei anglimi ir lydomas krosnyje Na2SO4 + 2C ® Na2S + CO2 ; Na2S + CaCO3 ® Na2CO3 + CaS . Atšaldyta masė paveikiama vandeniu – nusėda netirpus CaS. JAV soda buvo gaunama iš kriolito, kaitinant su kalkakmeniu: Na3AlF6 + 3CaCO3 ® Na3AlO3 + 3CaF + 3CO2 . Gautas natrio aliuminatas skaldomas vandeniu ir anglies dioksidu: 2Na3AlO3 + 3H2O + 3CO2 ® 3Na2CO3 + 2Al(OH)3 . Soda yra vienas svarbiausių produktų chemijos pramonėje. Dideli jos kiekiai sunaudojami stiklo, tekstilės, naftos, muilo, popieriaus pramonėje, taip pat vandens mikštinimui garų katiluose. Soda – pagrindinė žaliava gaminant tokius natrio junginius kaip natrio hidroksidą, natrio tetraboratą, fosfatą, tirpų stiklą ir kitus. Cheminėse laboratorijose plačiai naudojama lydymams paverčiant netirpius silikatus, sulfatus ir kt. uolienas tirpiais karbonatais. Namų ūkyje naudojama kaip valymo priemonė. Natrio hidrokarbonatas. NaHCO3 arba geriamoji soda – balti blogai tirpstantys šaltame vandenyje milteliai. Gamtoje NaHCO3 aptinkamas daugelio gydomųjų šaltinių vandenyje. Vandeniniai tirpalai turi silpnai šarminę reakciją. Vandeniniame tirpale (arba šlapias) natrio hidrokarbonatas lėtai išskiria CO2. Virš 65°C CO2 skyrimąsis tampa energingas. Gavimas. Natrio hidrokarbonatas gaunamas leidžiant anglies dioksidą per šaltą sotų Na2CO3 tirpalą: Na2CO3 + CO2 + H2O ® 2NaHCO3 . Natrio hidrokarbonatas – tarpinis produktas, gaminant natrio karbonatą Solvėjau būdu. Natrio hidrokarbonatas vartojamas gaivinamiems gėrimams, vaistams gaminti. Pagrindinė užpildančioji medžiaga tablečių gamyboje yra NaHCO3. Anksčiau geriamoji soda buvo naudojama skrandžio rūgštingumui mažinti. Natrio cianidas. Didžiausi metalinio natrio kiekiai po tetraetilšvino ir sudėtingų esterių gamybos sunaudojami natrio cianido gamybai. NaCN – tai nepaprastai nuodinga, balta, kristalinė medžiaga. Lydimosi temperatūra 564°C, virimo temperatūra 1500°C. Virš 600°C NaCN pradeda skilti ir azoto atmosferoje disocijuoja, išsiskiriant azotui, natrio karbidui, natriui ir angliai. Vandenyje vyksta natrio cianido hidrolizė. Gavimas. Pramoniniu būdu natrio cianidas gaunamas reaguojant natriui, amoniakui ir koksui. NaCN gamybai gali būti panaudojamas bet kuris iš šių būdų: Iš natrio, anglies ir azoto junginių. Tai plačiai palitęs būdas. Iš natrio karbonato pagal Bušerio metodą: Na2CO3 + 2C ® 2Na + 3CO 2Na +2C ® Na2C2 Na2C2 + N2 ® 2NaCN Na2CO3 + 4C + N2 ® 2NaCN + 3CO CaCN2 + 2NaCl + C ® CaCl2 + 2NaCN CaCN2 + CaC2 + Na2CO3 ® Ca(CN)2 + 2CaO + Na2O + 4C Ca(CN)2 + CaO + Na2O + 4C ® 2NaCN + 3CaO + 4C . Šis metodas buvo naudojamas pramonėje. Iš metalų nitridų, natrio ir anglies. Iš metalų karbidų ir natrio druskų, esant azoto. Dažniausiai naudojamas kalcio karbidas. Iš kitų cianidų. Pirmą kartą natrio cianidas buvo gautas iš kalcinuotos sodos ir kalio ferocianido. Redukuojantmetalų oksidus: MO + 2C + Na + 1/2N2 ® M + NaCN + CO . Kastnerio metodas. Pagal šį metodą reaguoja azotas su įkaitintos anglies ir natrio mišiniu. Vietoje azoto kartais naudojamas amoniakas. Šis procesas, kuriame susidaręs natrio amidas reaguoja su medžio anglimi, susidarant NaCN, dabartiniu metu plačiausiai naudojamas grynam natrio cianidui gauti. Procesas vyksta pagal lygtis: 2NaNH2 + C ® Na2CN2 + 2H2 Na2CN2 + C ® 2NaCN . Natrio cianidas panaudojamas neorganinėje ir organinėje cheminėje technologijoje, metalurgijoje ir kitose srityse. Neorganinėje technologijoje jis panaudojamas ciano vandenilio rūgšties gamyboje. Organinėje technologijoje NaCN naudojamas nailono gamyboje. Metalo apdirbamojoje pramonėje NaCN naudojamas įvairioms galvaninėms dangoms gauti, auksui iš rūdų gauti, plieno paviršiaus sukietinimui. Natrio sulfatas. Na2SO4 – bespalviai kristalai, sudarantys keletą modifikacijų. Žinomas metastabilus hidratas Na2SO4·7H2O, kuris iškrenta iš koncentruotų natrio sulfato tirpalų juos atšaldžius iki 12°C. Na2SO4 sudaro kietus tirpalus su daugeliu druskų (Li2SO4, K2SO4, Na2CO3), o taip pat dvigubas druskas su kitais sulfatais; kai kurie iš jų sutinkami gamtoje: Na2SO4·MgSO4·4H2O (astrachanitas), Na2SO4·CaSO4 (glauberitas), Na2SO4·3K2SO4 (glazeritas), 2Na2SO4·2Na2CO3 (berkeitas). Gamtoje Na2SO4 randamas mineralo mirabilito Na2SO4·10H2O, tenardito Na2SO4 bei kitų mineralų pavidalu, aptinkamas taip pat ištirpęs įvairiuose šaltiniuose. Kaip pašalinis produktas, dideliais kiekiais jis gaunamas gaminant druskos rūgštį iš natrio chlorido ir sieros rūgšties. Gaminant kalio chloridą, pašaliniais produktais yra NaCl ir MgSO4. Šaldant šį tirpalą (t<32°C) kristalizuojasi Na2SO4·10H2O druska: 2NaCl + MgSO4 = MgCl2 + Na2SO4 . Kaitinama virš 32°C ši druska lydosi nuosavame kristalizaciniame vandenyje, sudarydama bevandenę druską. Natrio sulfatas lengvai sudaro persotintus tirpalus. Natrio sulfatas, turintis kristalizacinio vandens, vadinamas Glauberio druska. Šią druską dar 1658 m. išskyrė Glauberis, gamindamas druskos rūgštį iš natrio chlorido ir sieros rūgšties. Įdomu pažymėti, kad bevandenio natrio sulfato ir jo dekahidrato pusiausvyros temperatūra yra griežtai fiksuota – 32,383°C. Ją galima pasiekti ir atkartoti be vargo visada. Tirpdamas vandenyje, kristalinis natrio sulfatas stipriai atšaldo vandenį (–18,86 kcal/mol). Jis kartais naudojamas kaip šaldančioji priemonė. Technikoje dažniausiai naudojamas bevandenis natrio sulfatas. Dideli jo kiekiai sunaudojami stiklo, celiuliozės, odų, tekstilės, mineralinių dažų gamyboje ir kt. Bevandenis natrio sulfatas naudojamas dujoms ir kitoms medžiagoms gaminti. Jis taip pat vartojamas medicinoje ir veterinarijoje. Natrio hidrosulfatas. Rūgštus natrio sulfatas NaHSO4 – bespalvė, lengvai tirpstanti druska susidaro, šildant natrio chloridą su koncentruota sieros rūgštimi: H2SO4 + NaCl ® NaHSO4 + HCl . Stipriau kaitinamas su natrio chloridu, pereina į neutralų sulfatą: NaHSO4 + NaCl ® Na2SO4 + HCl . Šildomas hidrosulfatas netenka vandens – susidaro pirosulfatas Na2S2O7, kuris skyla iki sulfato ir sieros trioksido: 2NaHSO4 ® Na2S2O7 + H2O Na2S2O7 ® Na2SO4 + SO3 . Natrio hidrosulfatas ir pirosulfatas vartojami mažai tirpių junginių cheminėje analizėje. Natrio sulfitas. Na2SO3 – bespalviai heksagonalinės sistemos kristalai, pakankamai gerai tirpstantys vandenyje (21g 100g H2O, 20°C). Temperatūrų intervale nuo –3,45 iki 33,4°C kristalizuojasi heptahidrato pavidale – Na2SO3·7H2O. Natrio sulfato tirpalai turi šarminę reakciją, juos rūgštinant, išsiskiria SO2. Natrio sulfitas – stiprus reduktorius. Vandeniniuose tirpaluose jį lengvai oksiduoja deguonis. Natrio sulfitas gaunamas vykstant Na2CO3 ir SO2 tirpalų sąveikai. Sotinimas vykdomas tol, kol gaunamas 45-47% NaHSO3 tirpalas. Tirpalas neutralizuojamas soda ir šaldant kristalinamas Na2SO3·7H2O. Bevandenis natrio sulfitas gaunamas išgarinant koncentruotą tirpalą. Vartojamas fotografijoje, vaistų pramonėje, medicinoje ir sintetinių pluoštų gamyboje. Natrio tiosulfatas (kartais neteisingai vadinamas hiposulfitu). Na2S2O3 – tai bespalviai kristalai, gerai tirpstantys vandenyje. Kaitinamas iki 300°C skyla į Na2SO3 + S; 600°C – į Na2SO4 + Na2S5 . Iki 120°C atsparus oro poveikiui, o prie didesnių temperatūrų oksiduojasi. Iš vandeninių tirpalų prie skirtingų temperatūrų kristalinasi įvairūs hidratai – Na2S2O3·1/2H2O; Na2S2O3·2H2O; Na2S2O3·5H2O. Žinoma visa eilė metastabilių jo hidratų. Natrio tiosulfatas – stiprus reduktorius. Stiprūs oksidatoriai jį oksiduoja iki sulfato, vidutinio stiprumo – iki sulfato ir sieros, o silpni (pvz., jodas) – iki tetrationato Na2S4O6. Tuo paremtas jo taikymas tūrinėje analizėje (jodometrija). Vandeniniai tirpalai turi neutralią reakciją; juos parūgštinus išsiskiria siera. Gaunamas tirpdant susmulkintą sierą karštame natrio sulfito tirpale Na2SO3 + S ® Na2S2O3 arba reaguojant natrio hidrosulfidui su bisulfitu: 2NaHS + 4NaHSO3 ® 3Na2S2O3 + 3H2O . Natrio tiosulfatas plačiai vartojamas fotografijoje vaizdo fiksavimui, t.y. jo apsaugojimui nuo tolesnio šviesos poveikio. Šio proceso metu jis tirpdo sidabro halogenidus, susidarant Ag kompleksiniams junginiams pagal schemą: 2Na2S2O3 + AgHal ® Na3[Ag(S2O3) 2] + NaHal . Natrio tiosulfatas naudojamas tekstilės pramonėje chloro pėdsakų pašalinimui audinių balinimo metu, medicinoje,veterinarijoje ir kaip analitinis reagentas. Natrio nitratas. NaNO3 vadinamas Čilės salietra. Dideliais kiekiais randamas Ramiojo vandenyno pakrantėse, Čilėje, Egipte ir kitur. Tai bespalviai gerai tirpūs vandenyje heksagonalinės struktūros kristalai. Lydimosi temperatūra 308°C. Virš lydimosi temperatūros skyla į NaNO2 ir O2. Dar aukštesnėse temperatūrose skyla į Na2O2 ir Na2O. Natrio nitratas gerai tirpsta skystame amoniake. Sudaro lengvai besilydančius eutektinius mišinius su daugeliu druskų, yra stiprus oksidatorius. Pramonėje gaunamas oksiduojant azoto rūgštimi natrio nitritą, gautą absorbuojant azoto oksidus šarmuose. Dideli kiekiai gaunami, sodą veikiant azoto rūgštimi. Naudojamas kaip azotinės trąšos ar komponentas grūdinimo voniose metalurgijoje ir oksidatorius stiklo pramonėje. Kiti junginiai. Natrio nitritas. NaNO2 – bespalviai ar silpnai gelsvi kristalai; vidutinio stiprumo oksidatorius. Nuodingas. Gaunamas garinant azoto oksidų prisotintus šarmų tirpalus. Naudojamas dažų, jodo gamyboje, maisto pramonėje ir medicinoje. Natrio silikatas. Silikatai aprašomi bendra formule xNa2O·ySiO2 (x,y= 1-3) . Gaunami kristalinant atitinkamos sudėties stiklus. Vandeniniai silikatų tirpalai vadinami skystu stiklu ir gaunami maišant įvairiais santykiais Na2O ir SiO2. Plačiai vartojami gaminant įvairius stiklus ir kaip plovimo priemonė cheminėje technologije. Natrio fosfatas. Ortofosforo rūgštis sudaro tris natrio druskas – NaH2PO4, Na2HPO4 ir Na3PO4 . Kaitinant NaH2PO4, gaunamas Na2H2P2O7 ir polimerinis natrio metafosfatas (NaPO3)x, x=2-6. Kaitinamas Na2HPO4 pereina į pirofosfatą Na4P2O7. Praktinę reikšmę turi pentanatrio trifosfatas Na5P3O10 . Dauguma fosfatų tirpūs vandenyje. Gaunami neutralizuojant kalcinuotos sodos ir natrio hidroksido tirpalus fosforo rūgštimi. Natrio fosfatai naudojami, daugiausia, kaip plovimo ir vandenį minkštinančios priemonės. Natrio fosfatai taip pat naudojami rūdų sodrinimui, tekstilės ir odų pramonėje, įvairiose maisto pramonės šakose, fotografijoje, elektrolitiniuose procesuose. Natrio fluoridas. NaF – bespalviai kristalai, mažai tirpūs vandenyje. Gamtoje sutinkamas mineralo viljonito pavidale, įeina į kriolito ir kitų mineralų sudėtį. Gaunamas lydant lauko špatus su soda ir silicio dioksidu. Naudojamas medienos koncervavimui, kovoje su žemės ūkio kenkėjais, fliusų ir emalių gamyboje, vandens fluoravimui. Natrio bromidas. NaBr – bespalviai kristalai, gerai tirpstantys vandenyje. Sudaro hidratus – NaBr·2H2O ir NaBr·5H2O. Gaunamas natrio šarmo tirpalus veikiant bromu, esant reduktorių. Naudojamas medicinoje ir fotografijoje. Natrio jodidas. NaJ – gerai tirpstantys vandenyje kristalai. Veikiamas šviesos ir deguonies geltonuoja, išsiskiriant jodui. Higroskopinis. Gaunamas tūrinės reakcijos tarp Fe3J8 ir Na2CO3 metu. Vartojamas medicinoje. Natrio hopofosfitas. NaH2PO2·H2O – bespalviai labai higroskopiški kristalai, gerai tirpūs vandenyje. Kaitinamas virš 200°C skyla. Natrio hipofosfitas – stiprus reduktorius. Reduokuoja Au, Ag, Pt, Hg, As; aktyviai reaguoja su stipriais oksidatoriais. Gaunamas iš kalcio hidroksido ir fosforo ar kalcio dihidrofosfito ir sodos. Neorganinėje chemijoje plačiai vartojamas reduktorius; labiausiai paplitęs reduktorius cheminiuose metalų (Cu, Ni, Ag, Au, Pd) nusodinimo porcesuose. TAI ĮDOMU D. Mendelejevas apie natrį. Daugiau nei prieš 100 metų Mendelejevas rašė: “Metalinio natrio gavimas priklauso prie svarbiausių chemijos atradimų ir ne vien tik todėl, kad tai išplėtė mūsų suvokimą apie paprastus kūnus, bet svarbiausia, kad natryje matyti tos cheminės savybės, kurios silpnai išreikštos kituose gerai žinomuose metaluose.” Neorganinė fotosintezė. Deginant natrį sausame ore prie didelių temperatūrų, gaunamas natrio peroksidas Na2O2, kuris pasižymi stipriomis oksidacinėmis savybėmis. Reaguojant natrio peroksidui su anglies dioksidu, vyksta procesas atvirkščias kvėpavimui: 2Na2O2 + 2CO2 ® 2Na2CO3 + O2, t.y. surįšamas anglies dioksidas ir išsiskiria deguonis. Visiškai kaip fotosintezėje. Natrio laidai. Natrio laidumas tris kartus mažesnis, negu vario. Bet natris devynis kartus lengvesnis. Be abejo, plonų elektrinių laidų iš natrio niekas nedaro. Tačiau gaminti magistralinius “laidus” didelėms srovėms perduoti, matyt tikslinga. Tokie “laidai” – metaliniai ar polietileniniai vamzdeliai, pripildyti natrio. Svarbiausia, šie laidai yra pigesni už varinius. Natris vandenyje. Visiems žinoma, kas bus įmetus natrio gabalėlį į vandenį. Tačiau natrio reakcija su vandeniu – ne vien pavojingas užsiėmimas. Priešingai, ši reakcija dažnai būna naudinga. Su natriu patikimai šalinami vandens pėdsakai iš transformatorinių alyvų, spiritų, eterių ir kitų medžiagų, o panaudojant natrio amalgamas (natrio ir gyvsidabrio lydinį) greitai galima nustatyti drėgmės kiekį daugelyje junginių. Amalgama su vandeniu reaguoja žymiai lėčiau. Drėgmės kiekis nustatomas pagal išsiskyrusio vandenilio tūrį. Natrio žiedas apie Žemę. Žemėje laisvas natris nesutinkamas. Tačiau viršutiniuose atmosferos sluoksniuose – 80 km aukštyje – nustatytas sluoksnis atominio natrio. Tokiame aukštyje praktiškai nėra nei deguonies, nei vandens pėdsakų, su kuriais natris galėtų reaguoti. Spektriniais metodais natrio buvo aptikta tarpžvaigždinėje erdvėje. Natris ir auksas. Tuo metu, kai buvo atrastas natris, alchemija jau buvo nemadinga, ir paversti natrį auksu jau nebuvo bandoma. Tačiau dabartiniu metu aukso gavimui sunaudojama nemažai natrio. Aukso rūda apdorojama natrio cianido tirpalu, kuris gaunamas iš elementaraus natrio. Auksas išskiriamas iš kompleksinių natrio cianido tirpalų, panaudojant cinką. Prieš 20-30 metų aukso gamybai buvo sunaudojama kasmet apie 20 tūkst. t metalinio natrio. Natrio butadieninis kaučiukas. 1928 metais pirmą kartą pagamintas sintetinis kaučiukas, gautas polimerinant 1,3-butadieną, panaudojus polimerizacijos proceso katalizatoriumi natrį. Natris ir plovimo priemonės. Pradinėmis medžiagomis sintetinių plovimo priemonių gamyboje dažniausiai būna aukštesnieji alkoholiai t.y., alkoholiai, kurių molekulės sudarytos iš ilgos anglies atomų grandinės. Pastarieji gaunami redukuojant atitinkamas rūgštis natriu.
Chemija  Referatai   (108,99 kB)
Nafta
2010-01-04
Nafta Žemės plutoje susidaręs aliejaus konsistencijos, degus, savito kvapo skystis. Sudėtingas įvairių angliavandenilių, deguonies, sieros ir azoto junginių mišinys. Didžąją dalį (83 – 87%) sudaro skysti, sotieji angliavandeniliai, arba parafinai (nuo C5H12 iki C15H32), cikliniai (naftenai) ir aromatiniai angliavandeniliai, kuriuose būna ištirpusių dujinių (meteno, etano, propano, butano) ir kietų (nuo C16H34 iki C35H72) angliavandenilių. Pagal vyraujančius angliavandenilius nafta skirstįoma į: • Parafininę; • Naftelinę parafininę; • Naftelinę aromatinę; • Parafininę naftelinę aromatinę; Naftoje būna deguonies (nafteninės ir dervinės rūgštys), sieros (merkaptanai, sulfidai, teofenas, policikliniai sieros junginiai), azoto (piridinas, hidropiridino ir hidrochinilino homologai). Naftoje dar būna mineralinių priemaišų ir vandens. Naftos fizikinės savybės priklauso nuo cheminės ir frakcinės sudėties. Spalva – nuo geltonos iki tamsiai rudos. Stingimo temperatūra nuo +30 iki –60 °C (kuo daugaiu naftoje parafino, tou aukštesnė). Tankis 830 – 970 kg/m³. Degimo šiluma 43,7 – 46,2 MJ/kg. Specifinė šiluminė talpa 1,7 – 2,1 J/kg•K. Dielektrinė skvarba 2 – 2,5, specifinis elektrinias laidumas 0,3•10ˉ18 - 2•10ˉ10 S/m. Kinematinė klampa 1,2 •10ˉ6 - 55•10ˉ6 m²/s (50 °C). Užsiliepsnojimo temperatūra nuo –35 iki 120 °C (priklauso nuo naftos frakcinės sudėties ir sočiųjų garų slėgio). Nafta tirpsta organiniuose tirpikliuose, su vandeniu sudaro emulsiją. Skirstymas: pagal sieros kiekį – nesieringa (iki 0,5% sieros), sieringa (0,5 - 2%) ir labai sieringa (>2%); Pagal tankį – lengvoji (tankis iki 870 kg/m³), vidutinė (871 – 910 kg/m³),sunkioji (>910 kg/m³). Naftos perdirbimas būna pirminis ir antrinis. Pirminis perdirbimas yra dviejų etapų distiliacijarektifikacijos kolonose, antrinis (naftos ir jos produktų) – krekingas ir riformingas. Prieš perdirbimą iš naftos pašalinama druskos, vanduo, ji stabilizuojama (tik lengvoji nafta). Druskos pašalinamos vandeniu: jis ištirpina naftoje esenčias druskas, o su nafta sudaro emulsiją. Iš emulsijos vanduo šalinamas taip: pridedama deemulsiklių (pvz., fenolio), kaitinama iki 100 – 140 °C ir el. Dehidratoriuje veikiama elektriniu lauku (150 – 300 kV/m); emulsija suyra ir nuo naftos atsiskiria vanduo. Nafta stabilizuojama, nudistiliuojant propano ir butano, kartais ir pentano frakcijas. Nafta distiliuojama 2 rektifikacijos kolonose; I kolonoje – atmosferos slėgyje, II kolonoje – vakuume (8 – 10,5 kPa). Iš pradžių nafta įkaitinama vamzdinėje krosnyje iki 300 – 350 °C ir distiliuojama rektifikacijos kolonoje. Kolonos viršuje susirenka benzinas, ligroinas, žibalas ir gazolis, apačioje – mazutas (~50% viso naftos kiekio). Mazutas pakaitinamas kitoje vamzdinėje krosnyje iki 400 – 420 °C ir distiliuojamas antroje rektifikacijos kolonoje: išsiskiria alyvos, lieka gudronas (~30% mazuto kiekio). Antiniu naftos ir jos produktų perdirbimu gaunami nesotieji ir aromatiniai angliavandeniliai. Pvz.: krekingu perdirbant naftą, mazutą, sotieji angliavandeniliai dėl slėgio ir temperatūros poveikio skyla į mažesnės molekulinės masės angliavandenilius; riformingu mažaoktanis benzinas ir ligroinas perdirbamas į daugiaoktanį benziną arba aromatinius angliavandenilius; alkilinimu, izomerizacijair kitomis cheminėmis reakcijomis iš naftos angliavandenilių gaunamos pradinės medžiagos alkoholių, cheminio pluošto, sintetinio kaučiuko, organinių rugščių sintezei, dažų, plastikų, ploviklių gamybai. Iš naftos produktų priemaišos (etileniniai angliavandeniliai, sieros junginiai) šalinamos kaitinant vandenilio atmosferoje ir padidintame slėgyje. Daugumos mokslininkų nuomone, nafta susidaro per daugelį milijonų metų Žemės plutoje 1,3 – 6,0 km gylyje, 50 – 140 °C temperatūroje iš planktono, esančio vandenyse ir jų dugno naftos telkinių, tačiau tik 1/6 telkinių geologiniai ištekliai viršija 3 mln. tonų (galima išgauti 25 – 50 % naftos). 27 pramoninių telkinių pirminiai išžvalgyti ištekliai viršija 0,5 mlrd. Tonų išžvalgytų užsienio naftos išteklių ~88% yra maždaug70 didžiųjų telkinių. 55% visų žinimų naftos išteklių yra mezozojaus, 25% - kainozojaus uolienose. Prognoziniai ištekliai (kurie gali būti išgauti šiuolaikiniais metodais) pasaulyje yra iki 500 mlrd tonų (1975), išžvalgyti ištekliai 87,8 mlrd tonų (1977). Užsienyje daugiausia naftos yra (mlrd. t.): Saudo arabijoje 22, Kuveite 12, Jungtinių Arabų Emiratuose 12, Irane 9, JAV ~5, Irake ~5.
Chemija  Referatai   (18,99 kB)
Ekologinė biotechnologija – tai gyvųjų organizmų ir biologinių pęrocesų ekologija. Ekologinė biotechnologija nagrinėja mikroorganizmų prisitaikymą prie aplinkos sąlygų, mikroorganizmų ekologiją, vandens valymą, kietų atliekų nukenksminimą, dirvos užteršimą ir teršalų kilmę. Biotechnologiniuose procesuose plačiai naudojami mikroorganizmai (bakterijos, mielės).
Biologija  Referatai   (5 psl., 12,05 kB)
Žmogus ir vanduo
2009-12-22
Su vandeniu iš virškinimo trakto įsiurbiamos maisto medžiagos, pašalinami medžiagų apykaitos produktai. Vanduo, kurį organizmas gauna su daržovėmis, uogomis ir vaisinių augalų antpilais yra labai naudingas, nes jame yra ištirpusių įvairių biologiškai veiklių medžiagų. Daugiau vandens reikia gerti sergant kepenų ir tulžies latakų ligomis, esant ūminiams ir lėtiniams apsinuodijimams, taip pat užkietėjus viduriams. Patariama mažiau skysčių vartoti sergant širdies bei inkstų ligomis. Manoma, kad vanduo, gautas iš ištirpinto sniego ar ledo, yra efektyvus asterosklerozės profilaktikai ir gydymui. Štai kodėl žmonės nuo seno gydymui naudoja šaltinio vandenį. Žmogui labai naudinga maudytis, praustis po dušu, apsitrinti ir kt. Vandens gydomosios savybės buvo pastebėtos dar 1500 metų prieš mūsų erą ir aprašytos indų himnų knygoje “Rigvedoje”: “Apsiplaudamas žmogus įgyja dešimt privalumų - jo protas pasidaro blaivus, gaivus, pats žmogus pasidaro žvalus, sveikas, įgyja jėgų, grožio, atjaunėja, dvelkia švara, jo odos spalva darosi maloni ir patraukia gražių moterų dėmesį”. VANDUO IŠ CHEMINĖS PUSĖS Vanduo, vandenilio oksidas, H2O, bespalvis skystis. Neturi skonio ir kvapo. Vandens molekulėje du vandenilio atomai yra susijungę su deguonies atomu taip, kad kampas tarp šių lygus 105. Dėl tokio teigiamų vandenilio jonų ir neigiamo deguonies jono išsidėstymo vandens molekulė yra dipolis. Polinė vandens prigimtis sąlygoja tai, kad jis sudarytas ne tik iš paprastų H2O molekulių, bet ir iš jų asociatų (H2O)x. Daugelis vandens savybių yra kitokios, negu panašios sudėties junginių. 0C temperatūroje vanduo užšąla ir virsta ledu, 100C temperatūroje užverda - virsta garu. Daugiau nei 1500C temperatūroje vandens molekulė ima skilti į elementus. Kritinis vandens slėgis 21,5 Mpa, kritinė temperatūra 374,15C, tankis 998,23 kg/m3 (20C). Didžiausias vandens tankis (1000 kg/m3) yra 4C temperatūroje. Šiluminė vandens talpa yra didelė (41,9 kJ/kg K), todėl vandens masyvai Žemėje turi didelę įtaką klimatui. Vanduo yra silpnas elektrolitas (H2OH++OH-; K=[H+][OH-]=1014, t.y. tik viena iš 550 000 000 molekulių yra disociavusi). Vandens laidumą elektrai labai padidina jame ištirpusios rūgštys, bazės arba druskos. Gamtoje yra 9 izotopinės vandens atmainos (apie 0,018% visos gamtinio vandens masės sudaro sunkusis vanduo). Vanduo yra vienas universaliausių tirpiklių. Iš organinių junginių tirpina tik tuos, kurie turi polinių grupių (-OH, -COOH, -NH2) ir yra nelabai didelės molinės masės. Kai kurie junginiai prisijungia vandenį (hidratacija), vnadens veikiami, skyla - vyksta hidrolizė, arba nuo jų pačių atskyla vanduo (dehidratacija). Daugelis druskų turi kristalizacinio vandens. Vandens yra kai kuriuose kompleksiniuose junginiuose (akvakompleksuose). Vanduo lengvai reguoja su šarminiais metalais, sudarydamas hidroksidus. Geležis ir jos lydiniai, vandens veikiami, koroduoja. Fluoras iš vandens molekulės atskelia atominį deguonį (F2+H2O 2HF+O). Su oksidais vanduo sudaro bazes arba rūgštis. Aukštoje temperatūroje vanduo konvertuoja metaną iki anglies monoksido. Vanduo yra daugelio cheminių reakcijų terpė ir katalizatorius. VANDUO IŠ GEOGRAFINĖS PUSĖS Gamtoje iš stacionarių vandens išteklių tik 2,53% vandens yra gėlo, o prieinama naudoti tik 0,76% visų vandens išteklių. Litosferoje yra apie 1 000 000 000 km3 vandens; jis įeina į mineralų, uolienų sudėtį. Daug jo susitelkę Žemės mantijoje (13 - 15 mlrd. km3); iš jos kasmet į paviršių (per vulkaninius procesus) patenka apie 1 km3 vandens. Gamtinis vanduo turi daug ištirpusių organinių ir neorganinių medžiagų. Gryninamas distiliavimu arba jonitais. Labai grynas vanduo sintetinamas ir vandenilio ir deguonies specialiuose aparatuose. Vanduo naudojamas kaip cheminis reagentas, tirpiklis, betono ir skiedinių komponentas. Jis yra energijos nešiklis, šilumnešis. Vandens garai yra garo mašinų, turbinų darbo medžiaga; vanduo reikalingas hidraulinėms pavaroms ir presams. Daug jo suvartojama buityje (200 - 500 l per parą žmogui). VANDUO IŠ BIOLOGINĖS PUSĖS Vanduo yra gyvosios materijos Žemėje komponentas, svarbiausia terpė, kurioje vyksta organizmų medžiagų apykaita. Manoma, kad vandenyje atsirado gyvybė. Per evoliuciją kai kurie vandens augalai ir gyvūnai prisitaikė gyventi sausumoje, bet vanduo buvo ir yra svarbiausias jų aplinkos veiksnys, daugelio fermentinių reakcijų substratas. Į organizmo medžiagas vanduo įsijungia fotosintezės metu. Organizmų skysčiuose (limfoje, kraujuje, virškinimo sultyse, vakuolių sultyse) vanduo daugiausiai yra laisvas, o ląstelėse, audiniuose - susijungęs su baltymais, kitais organiniais junginiais. Vanduo palaiko ląstelių ir audinių turgorą, išnešioja maisto medžiagas ir jų apykaitos produktus, padeda reguliuoti kūno temperatūrą ir daugelį kitų gyvybės procesų. Dės vandens stokos organizmų gyvybinės funkcijos sutrinka ir jie greit žūva. Tik ramybės būsenoje esančios kai kurios gyvybės formos (pvz. sporos, sėklos) apsieina be vandens. Vandens kiekis kai kuriuose organizmuose, jų organuose, audiniuose (%) Medūzos 95 - 98 Dumbliai 90 - 98 Augalų lapai 78 - 86 Žuvys apie 70 Žmogus (ir kiti žinduoliai) 63 - 68 Smegenys pilkoji medžiaga baltoji medžiaga apie 84 apie 72 Raumenys apie 75 Griaučiai 20 - 40 Vabzdžiai 45 - 65 Javų sėklos 12 - 14 Samanos, kerpės (anabiozės būsenoje) 5 - 7 VANDUO IŠ MEDICININĖS PUSĖS Aplinkos poveikis Aplinka veikia jūsų sveikatą ir gyvenseną, tad gerindamas aplinką sustiprinsite sveikatą ir savo gerovę. Vanduo, kurį geriate Stebėjimai parodė, kad žmonės, gyvenantys vietovėse, kur vanduo minkštas, dažniau serga širdies ligomis, jų mirštamumas didesnis nei žmonių, geriančių kietą vandenį. Persikėlus iš vietos, kur vanduo minkštas, ten, kur jis kietas, skirtumas beveik nejuntamas, tad nepatartina vandenį minkštinti specialiai. Jei nerimaujate dėl geriamoji vandens švarumo, galite pradėti gerti mineralinį vandenį arba vandentiekio vandenį filtruoti. Žinoma, netinkamai naudojantis šiais dviem būdais, galima pakenkti sveikatai: atidarytus butelius laikykite šaldytuve, kad į vandenį nepatektų bakterijų, o filtrus reguliariai keiskite. Kad vanduo būtų geresnis, savo name pakeiskite visus senus vandentiekio rezervuarus bei vamzdžius, maistui gaminti naudokite tik šviežią vandenį. Sveika mityba Vanduo yra gyvybės pagrindas. 100 mililitrų vandens yra 1 mg natrio, 0,3 mg kalio, 4,5 mg kalcio, 1 mg magnio ir šiek tiek geležies. Jis būtinas medžiagų apykaitai. Per mažai išgeriant vandens ir kitų skysčių, organizmas apsinuodija savo paties medžiagų apykaitos produktais. Gali greičiau sutrikti tulžies pūslės veikla ir susiformuoti inkstų akmenligė, greičiau organizmas pradės senti. Nepatariama nuolat gerti virinto vandens, nes verdant ant arbatinuko sienelių nusėda žmogui naudingų mineralinių druskų ir mikroelementų. Nereikėtų nuolat gerti ir mineralinio vandens, nes tuomet per daug mineralinių druskų susikaupia organizme. Gerti reikėtų higienos centre patikrintą vandenį (iš šulinio, vandentiekio). Į gėrimus rekomenduojama dėti ledo gabaliukų. Skysčių derėtų išgerti 1,5 -2,2 litro per dieną. Įtaka sveikatai Vartojant užterštą vandenį, galima susirgti įvairiomis ligomis, kurių sunkumas priklauso nuo žmogaus amžiaus, bendros sveikatos būklės, higieninių gyvenimo sąlygų. Tačiau labiausiai ligos sunkumą lemia su vandeniu į organizmą patenkančių mikroorganizmų ar cheminių priemaišų tipas ir kiekis. Taigi yra du svarbiausi vartojamo vandens užterštumo tipai - mikrobiologinis ir cheminis. Mikrobiologinių ir cheminių teršalų poveikis sveikatai Daugelis mikroorganizmų, kurių šaltinis gali būti ligoniai, bacilų nešiotojai arba gyvūnai, gali sukelti ligs, kuriomis užsikrečiama, vartojant mikrobiologiškai užkrėstą vandenį. Į žmogaus organizmą su vandeniu patekę mikrobai ne visada sukelia ligą. Tačiau patogeniniai mikrobai gali būti priežastimi tokių rimtų susirgimų, kaip cholera, vidurių šiltinė ir kt. Būtent dėl to labai svarbu, kad į geriamojo vandens šaltinius nepatektų teršalai, kuriuose gali būti patogeninių mikroorganizmų. Cheminio vandens užterštumo padariniai Vartojant geriamąjį vandenį, kuris užterštas cheminėmis medžiagomis, net jei jų būtų ir labai mažas kiekis, galima rimtai ir ilgam laikui susirgti. Kai kurios vandenyje esančios cheminės priemaišos, taip vadinami kancerogenai, gali sukelti vėžį. Jei gyventojų aprūpinimo geriamuoju vandeniu taisyklės nėra pakankamai griežtos, labai išauga tikimybė susirgti vėžinėmis ligomis.
Aplinka  Referatai   (26,27 kB)
Televizija
2009-12-02
Televizija – judančių vaizdo ir paveikslo perdavimas laidais arba radijo bangomis.Šiandien jos neįmanoma atsieti nuo mūsų buities. Spustelėjus televizoriaus jungiklį, nušvinta ekranas ir mes matome vaizdus bei girdime garsus. Televizija yra telekomunikacinė sistema skirta transliuoti ir priimti vaizdus ir garsą per atstumą
Fizika  Referatai   (10 psl., 247,99 kB)
Leidinyje nagrinėjama technikos objektų patikimumo sąvoka bei jo įvertinimo metodai. Objekto patikimumas įvertinamas atsižvelgiant į ypatybes. Kiekviena iš šių ypatybių – ilgaamžiškumas, negendamumas, pataisomumas, išsilaikymas – apibūdinama tam tikrais rodikliais arba charakteristikomis. Gedimo susiformavimo ir jo pašalinimo laikas yra atsitiktiniai dydžiai, todėl patikimumo charakteristikos apskaičiuojamos tikimybių teorijos ir matematinės statistikos metodais.
Mechanika  Referatai   (19 psl., 105,19 kB)
Aplinkosaugos samprata ir strategija. Globalinės aplinkosaugos problemos (Aplinkos buklė Lietuvoje). Kietosios atliekos bei jų tvarkymas. Atliekų susidarymo šaltiniai, rūšys ir apskaita. Atliekų surinkimo sistema. Atliekų perdirbimas ir deponavimas. Technologijų be atliekų kūrimas. Cheminis nutekamųjų vandenų valymas. Biologinis nutekamųjų vandenų valymas. Oro valymas bei taršos mažinimas. Aplinkos apsaugos valdymo sistema Lietuvoje. Aplinkosaugos teisinio reguliavimo svarba.
Vadyba  Kursiniai darbai   (48 psl., 150,75 kB)
Žmogus ir vanduo
2009-09-17
"Žmogus ir vanduo" - tai darbas, aprašytas apie vandenį Lietuvoje ir pasaulyje iš cheminės, geografinės, biologinės, medicininės pusių, jo tarša, ciklas ir kita svarbi informacija.
Chemija  Pateiktys   (10 psl., 20,71 kB)
Kompiuterio sandara, architektūra, rūšys (plačiau apie IBM kartas), pagrindiniai parametrai, istorija. Operacinė sistema WINDOWS 95/98/2000/XP. Jų privalumai. Įėjimas į sistemą. Tinklas. Darbinis stalas DESKTOP. Programos MY COMPUTER, WINDOWS EXPLORER, RECYCLE BIN. Įvairūs programų paleidimo būdai. Programų langai ir jų valdymas. Startinis meniu. Diskai, katalogai, bylos. Naujų kūrimas, senų šalinimas, kopijavimas ir perkėlimas. Bylų paieška. Archyvatoriai. Internetas.Informacijos paieška. Elektroninis paštas. Kompiuterio sandara, architektūra, rūšys (plačiau apie IBM kartas), pagrindiniai parametrai, istorija.
Informatika  Konspektai   (15 psl., 42,06 kB)
Senatvė ir mirtis
2009-09-10
Senatvė, laikoma, prasideda 75-ais gyvenimo metais. 70 metų žmogus paprastai būna apie 2-3 centimetrus žemesnis. Tarp 70 ir 80 metų žmogus būna dukart silpnesnis, nei buvo 25 metų, jo plaučių tūris sumažėja taip pat dukart. Mokslininkai mano, kad pašalinus tris pagrindines vyresnio amžiaus ligų grupes - širdies susirgimus, vėžį ir infarktus bei insultus, vidutinis žmonių amžius pailgėtų tik 5-10 metų, palyginus su dabartiniais 72 metais. Yra daugiau priežasčių, kurios sukelia senatvę ir mirtį. Pasaulyje vis daugiau žmonių pasensta, ir vis aktualesnė darosi gerontologija - mokslo šaka tirianti senstančio organizmo pokyčius.
Biologija  Konspektai   (6 psl., 77,09 kB)