Referatai, kursiniai, diplominiai

   Rastas 1651 rezultatas

Darbo tikslas – išanalizuoti darbo užmekesčio apskaitos tvarkymą. Darbo uždaviniai: 1. Išanalizuoti literatūrą. 2. Išanalizuoti kaip organizuojama darbo apskaita UAB „ Kortuva“. 3. Išanalizuoti kaip pildomi UAB „ Kortuva“ darbo laiko ir darbo užmokesčio žiniaraščiai. Šio darbo objektas - darbo užmokesčio apskaita UAB „Kortuva“.
Apskaita  Kursiniai darbai   (22 psl., 34,13 kB)
Finansų teisės savarankiškas darbas PENSIJŲ SOCIALINIS DRAUDIMAS LIETUVOJE IR VOKIETIJOJE
Teisė  Referatai   (17 psl., 66,66 kB)
Daugelyje pasaulio šalių mokesčių sistemas sudaro įvairūs mokesčiai, tačiau labiausiai paplitęs yra pridėtinės vertės mokestis. Valstybėje, kurioje yra įvestas šis mokestis, jį moka kiekvienas. Juk PVM yra vartojimo mokestis, jį sumoka galutinis vartotojas, nesvarbu, ar jis yra fizinis ar juridinis asmuo. Šiam mokesčiui yra skiriama daug dėmesio, įvairių šalių ekspertai mėgina išsiaiškinti PVM taikymo privalumus ir trūkumus. Tačiau siekiant vien pastebėti juos, reikia itin gerai žinoti šio mokesčio elementus. Šiame darbe mes ir aptarsime du pagrindinius PVM mokesčio elementus: apmokestinamąjį momentą ir apmokestinamąją vertę.
Finansai  Referatai   (24 psl., 35,15 kB)
SEB bankas
2010-11-16
Pirmaujančios Šiaurės Europos finansų grupės SEB narys SEB bankas yra didžiausias komercinis bankas Lietuvoje, teikiantis visas bankininkystės paslaugas privatiems, verslo klientams ir finansų įstaigoms. SEB bankas pirmauja svarbiausiose šalies bankų paslaugų rinkose ir aptarnauja daugiau negu milijoną klientų visoje Lietuvoje. Banko grupę Lietuvoje sudaro AB SEB bankas ir keturios bendrovės: UAB „SEB Enskilda“, UAB „SEB investicijų valdymas“, AB „SEB lizingas“, UAB „SEB Venture Capital“. Lietuvoje taip pat veikia tiesiogiai SEB grupei priklausanti UAB „SEB gyvybės draudimas“, teikianti šalyje gyvybės draudimo paslaugas, UAB „Litectus“ – specializuota nekilnojamojo turto valdymo bendrovė, kurios paskirtis yra užtikrinti grupei priklausančio nekilnojamojo turto valdymą, plėtrą ir realizavimą, bei „Skandinaviska Enskilda Banken AB“ Vilniaus filialas, įkurtas 2008 m. spalio 6 dieną ir vykdantis dalies SEB klientų Švedijoje sąskaitų tvarkymo operacijas.
Finansai  Ataskaitos   (20 psl., 311,12 kB)
Pensijos kaupimas – įpatingos svarbos procesas kiekvienam žmogui. Senstanti visuomenė, vis labiau mažėjantis gimstamumas, didėjanti emigracija, lėmė pensijų kaupimo sistemos įdiegimą, kurioje žmogus pats galėtų kaupti lėšas savo pensijai. Pervesdami įmokas į pensijų fondus, kiekvienas kaupiame savo senatvei – pensija bus mokama iš mūsų asmeninėje sąskaitoje sukauptų lėšų. Šiame darbe bus analizuojama pensijų sistema Lietuvoje, pensijų kaupimo fondai, jų peikiama nauda bei rizika. Taip pat sulyginsime dviejų, laikomų didžiausiais Lietuvoje, “SEB banko“ ir „Swedbank“ teikiamas pensijų fondų kaupimo paslaugas, išnagrinėsime panašumus ir skirtumus.
Administravimas  Analizės   (17 psl., 121,2 kB)
Darbo tikslas - išanalizuoti AB „Rokiškio sūris“ įmonės ūkinę veiklą. Darbo objektas – AB „Rokiškio sūris“ įmonės ūkinė veikla. Darbo uždaviniai: 1. Teoriniu požiūriu apibūdinti ūkinę veiklą. 2. Apibūdinti AB „Rokiškio sūris“ įmonės veiklą. 3. Išanalizuoti ūkinę veiklą AB „Rokiškio sūris“ įmonėje. Darbo metodai: mokslinės literatūros analizė, AB „Rokiškio sūris“ įmonės duomenų analizė.
Vadyba, ekonomika, rinkodara  Referatai   (20 psl., 49,03 kB)
Išsirinkti sau tinkamus kvepalus nėra lengvas darbas. Kvepalai vienaip ar kitaip yra susiję su įgimtu žmogaus kvapu, su žmogaus išvaizda ir asmenybės savybėmis, todėl jų niekada negalima pirkti vadovaujantis kitų (draugų ar kolegų) patarimais. Renkantis kvepalus, galima padaryti įdomių atradimų – sužinoti daugiau apie save, atrasti unikalų stilių ar net išmokti, kaip žavėti ir manipuliuoti, pasitelkiant kvapus... Žmogus rinkdamas kvepalus atsižvelgia į daugelį veiksnių (pvz. buteliuko formą, spalvą, kvapą, firmą.. ), bet pirmiausia susiruošus pirkti kvepalų, reikėtų apgalvoti, kokią pinigų sumą galite skirti. Kaina yra vienas iš pagrindinių veiksnių, kuris lemia mūsų apsisprendimą, ar pirkti kvepalus. Todėl šiame tyrime mes bandysime išsiaiškinti, kas turi didžiausią įtaką kvepalų kainai.
Finansai  Analizės   (19 psl., 105,91 kB)
Valiuta – yra sutartinis mainų vienetas, skirtas apmokėti už prekes ar paslaugas. Tai viena iš pinigų formų, skirta mainų vykdymui, vertės išsaugojimui ir vertės standarto palaikymui. Valiuta yra dominuojanti prekių ir paslaugų mainymo priemonė. Prekyba tarp skirtingų valiutos zonų vyksta nustatant valiutos kursus - kainas, kuriomis valiutos (taip pat atitinkamų valiutos zonų prekės ir paslaugos) perkamos ar parduodamos. Priklausomai nuo valiutos kurso reguliavimo metodo valiutos klasifikuojamos į kintančias ir fiksuotas.
Ekonomika  Referatai   (10 psl., 26,48 kB)
Intelektas
2010-04-07
Šiame darbe mes nagrinėsime intelekto ir sugebėjimų santykį, ieškosime skirtumų ir panašumų. Aptarsime intelekto istorinę raidą, jo progresavimą natūraliame gyvenime. Išnagrinėsime intelekto matavimo ir vertinimo galimybes. Sužinosime testų realią naudą ir žąlą, taip pat koeficiento IQ patikimumą . Nagrinėsime intelekto pritaikymo galimybės praktinėje veikloje, jo kintamumo priežastis, atliktų tyrimų ir gautų rezultatų išvadas, taip pat aplinkos ir paveldėjimo įtaką intelektui. Šio darbo tikslas išanalizuoti ir susisteminti intelekto sudėtines dalis, ištirti jų vertinimo ir matavimo ypatumus, įvertinti testų patikimumą. Sužinosime intelekto atsiradimo priežastis, kur naudojama ši sąvoka, kokią įtaką intelektas daro mokymosi, profesinėje asmeninėje srityje. Ar intelektas reikalingas tikslams pasiekti, o gal tai mokslo žinių įvertinimo sąvoka? Išanalizuosime kokią reikšmę intelektui turi gabumai ir talentai.
Psichologija  Referatai   (11 psl., 16,62 kB)
Įvairių valstybių, šalių ir visuomenių vystymesi būna politinių- ekonominių krizių, o po jų seka mokslinės- techninės bei ekonominės revoliucijos. Toks banguotas vystymasis būdingas ir technikos raidai. Kiekvienos rūšies technikos istorijoje galima išskirti tam tikrus vystymosi etapus.
Inžinerija  Referatai   (14 psl., 76,84 kB)
Įmonės veikla orientuosis į įmones norinčias turėti savo puslapį, talpinti reklamas, kurti elektroninius paštus, bei gauti išsamią konsultaciją. Taipogi bus orientuota ir į pavienius klientus norinčius turėti savo svetainę, ją patalpinti ar gauti visapusišką konsultaciją. Įmonė pranašesnė už kitas tuo, kad jos kainos bus daug patrauklesnės klientui, bei teikti kokybiškesnes paslaugas kiekvienam klientui.
Vadyba  Projektai   (21 psl., 52,75 kB)
Specialiojo pedagogo praktikos ataskaita.
Pedagogika  Ataskaitos   (41 psl., 62 kB)
Gyvulių skerdimas
2010-03-16
Gyvulių skerdimo egzaminui.
Kita  Paruoštukės   (15 psl., 47,98 kB)
Dabartineje visuomeneje, kai žinių reikšmė tampa vis aktualesnė, o laikas brangesnis, matoma vis didejanti tendencija skirti šeimai kuo daugiau vis mažėjančio laiko. Atsižvelgiant i užsienio patirtį, kai verslo centruose darbuotojų vaikams yra įkūriami priežiūros ir žaidimų kambariai ir panašios paslaugos, padedančios išlaikyti kuo stipresnį ryšį ir būti kuo arčiau savo vaikų, kartu taupyti laiką ir tikslingai jį panaudoti – tai mus sudomino. Kadangi mūsų grupėje yra jauna mamytė, kuriai toks vaikų priežiūros kambarys būtų galimybė suderinti studijas su motinystę, pradėjome svarstyti šią galimą verslo idėją atidžiau.
Vadyba  Projektai   (26 psl., 113,62 kB)
Šie metodai turi labai lėtą konvergavimą, bet teoriškai jie gali įveikti vietinį minimumą (local minima.) Kitas trūkumas yra tas, kad vienas turi valdyti daugybę vidinių kintamųjų (kiekvienam svoriui nustatyti triukšmo periodus), kas nėra labai efektyvu. Arba apibrėžti tik išorinius kintamuosius - tokius kaip įėjimo signalas (input), norimas signalas ir žingsnio dydis. Iš pragmatiškos požiūrio pusės labai pageidaujami būtų taip vadinami on-line (tiesioginiai) algoritmai, t.y. algoritmai, kur atskiram pavyzdžiui svoriai kaskart būtų atnaujinami. Bet žvelgiant iš (annealing) modeliavimo pusės į stochastinę on-line atnaujinimo metodų prigimtį , jų realizavimas nebūtų efektyvus. Dėl šių priežasčių bus bandoma atlikti tokį eksperimentą: pridėti triukšmus prie norimo signalo ir eksperimentiškai ištirti tokios procedūros privalumus. Triukšmas taip pat buvo naudojamas gradiento perdavimo (descent) procedūrose. Holmstrom išanalizavo statinio BP algoritmo [Holmstrom and Koistinen, 1992] apibendrinimo galimybę, kuomet atsitiktinis triukšmas įvedamas į išorinius signalus. Šie bandymai parodė, kad apibendrinimas gali būti pagerintas naudojant bandomuosiusose (training) duomenyse papildomus triukšmus. Matsuoka pademonstravo, kad ir triukšmo įvedimas į vieną įėjimo signalą gali pagerinti apibendrinimą (generalization) [Matsuoka, 1992]. Abu autoriai susikoncentravo tik ties tinklo apibendrinimo galimybe, tačiau jie nenagrinėjo triukšmų poveikio mokymosi greičiui ir išėjimo iš local minima galimybės. II Mokymosi su papildomais triukšmais atitinkamame signale analizė II.1 Klasikinis stebimas mokymasis Šioje dalyje kaip mokymosi sistemos prototipas yra naudojamas daugiasluoksnis perceptronas (perceptron) (MLP) su dviem lygiais. Tačiau išvados gali būti atvaizduojamos atsikartojančiose topologijose. Šiame tinkle, xk aprašo iėjimo vektoriaus vieną elementą; yi yra išėjimo lygio i-tasis išėjimas; Wij nusako svorius tarp paslėpto ir išėjimo sluoksnių; Vjk yra svoris tarp įėjimo ir paslėpto sluoksnio; ir Pj nusako paslėpto sluoksnio aktyvavimą. Pateiktas čia apmokymo algoritmas - tai atgalinio mokymo (backpropagation) (BP) algoritmas [Rumelhart et al, 1986]. Tegul di(t) žymi kelis norimus išėjimo neurono i laiko momentu t atsakymus, kur t yra diskretaus laiko indeksas. Galima apibrėžti klaidos signalą, kaip skirtumą tarp norimo atsakymo di(t) ir turimo atsakymo yi(t). Tai nusakomo (1) formulė: Pagrindinis mokymosi tikslas yra minimizuoti kainos funkciją, kurią nusako klaidos signalas ei(t), taip, kad turimas kiekvieno išėjimo neurono atsakymas tinkle statistikine prasme artėtų prie norimo atsakymo. Kriterijus naudojamas kainos funkcijai yra Vidurkio-Kvadrato-Klaidos (Mean-Square-Error) (MSE) kriterijus, apibrėžiamas kaip klaidos kvadrato sumos vidurkio-kvadrato reikšmė [Haykin, 1994]: Kur E yra statistikinis tikimybės operatorius ir sumuojami visi išėjimo sluoksnio neuronai (i=1,…,M). Kainos funkcijos J minimizavimas atsižvelgiant į tinklo parametrus lengvai g.b. formuluojamas gradiento mažinimo (gradient descent) metodu. Šios optimizavimo procedūros problema yra ta, kad jai reikia žinių apie neapibrėžtų procesų, generuojančių pavyzdžius, statistikines charakteristikas. Praktiškai tai gali būti apeita, optimizavimo problemai surandant artimą sprendinį. Klaidos kvadratų sumos momentinė reikšmė (Instantaneous value of the sum of Squared Errors) (ISE) yra pasirinkimo kriterijus [Haykin, 1994]: Po to tinklo parametrai (svoriai) yra pritaikomi ε(t). Faktiškai ši procedūra vadovaujasi taip vadinamu LMS algoritmu, kuomet svoriai yra atnaujinami kartu su kiekvienu pavyzdžiu [Widrow and Hoff, 1960]. II.1 Mokymasis su norimu triukšmingu signalu Vietoj to, kad svorių pritaikymui naudoti norimą signalą di(t), kaip norimas signalas išėjimo neuronui i imamas naujas signalas di(t)+ ni(t), kur ni(t) yra triukšmo periodas. Šiam triukšmo periodui priskiriamas nulinės reišmės baltas triukšmas su σ2 pokyčiu (variance) , nepriklausančiu nei nuo įėjimo signalo xk(t) nei nuo norimų signalų di(t). Neapibrėžtas triukšmo perdavimas yra priskiriamas Gauso ar vienarūšiam perdavimui. Čia norima įrodyti, kad šis naujas norimas signalas neįtakoja galutinės svorių reikšmės statistikine prasme. Tai užtikrina, kad nauja savybė sprendžia originalią optimizavimo problemą. Turint naujus norimus signalus, MSE (4) lygties gali būti perrašyta taip: Nėra sunku įrodyti [Richard and Lippmann 1991; White, 1989; Haykin, 1994], kad (4) lygtis yra lygi Kur ‘|’ simbolis žymi sąlygines galimybes (probabilities), ir 'var' yra kitimų (variance) sutrumpinimas. Pastebėkite, kad antras periodas dešinėje (5) lygties pusėje prisidės prie bendros klaidos J ir koks ir bebūtų mokymosi progresas, jis neįtakos galutinės svorių reikšmės, kadangi jis nėra tinklo svorių funkcija. Optimali svorių reikšmė yra apsprendžiama tiktai pirmo (5) lygties periodo. Kuomet triukšmas yra nulinės reikšmės baltas triukšmas ir jis nepriklauso nei nuo norimo, nei nuo įėjimo signalų, mes turime (6) lygtis rodo, kad triukšmas iš lygties, kuri apibrėš galutines svorių reikšmes, dingsta, taigi mokymassi su norimo triukšmo signalu duos rezultatų, originalios optimizavimo problemos sprendimo prasme, t.y. be triukšmo pridėjimo prie norimo signalo. (learning with the noisy desired signal will yield in the mean the solution for the originaloptimization problem, i.e., without the noise added to the desired signal.) Reiktų konstatuoti, kad ši išvada galioja visoms architektūrų rūšims.Atlikimo funkcijai apibrėžti reikalingi tik išoriniai matavimai (MSE), ir tai nėra susiję nei su topologija nei su kainos funkcijos apibrėžimo būdu (statiniu ar kintamu). Nors šis sprendimas yra patenkinamas, reikia prisiminti, kad mus domina on-line algoritmas, kur yra mokymosi dinamika, t.y. kaip mokymosi progresas yra veikiamas triukšmų. II.3 On-line algoritmas mokymuisi veikiant norimam triukšmingam signalui Reiktų pažymėti, kad atliekamos, modifikacijos, jokiais būdais neveikia atgalinio mokymosi algoritmo realizacijos, kadangi yra modifikuojamas tik signalas, kuris yra įvedamas kaip norimas rezultatas. Taigi, siūlomos modifikacijos gali būti taikomos dar neegzistuojančioms modeliavimo sistemoms. Svarbi problema, kaip modeliavimo metu valdyti triukšmų kaitą (variance). Dėl to tolimesniame skyriuje bus apžvelgiama tiukšmų įtaka momentiniam gradientui. II.4 Norimo triukšmingo signalo gradiente analizė. Svorinio vektoriuas pritaikymo statiniame BP algoritme formulė, tiklui atvaizduotame 1 pav. norimame signale be triukšmų yra [Hertz et al.,1991] Svoriams tarp paslėpto sluoksnio ir išorinio sluoksnio, ir Svoriams tarp iėjimo sluoksnio ir paslėpto sluoksnio, kur ŋ yra žingsnio dydis. Su triukšmingu norimu signalu, ISE (3) lygties tampa: Lygtyse (7) ir (8) įrašant naują reikšmę εnoisy(t), gausime lygtis Palyginus lygtis (7) su (10) ir (8) su (11) daroma išvada, kad triukšmo pridėjimo prie norimo signalo poveikis, tai extra stochastinio periodo svoriniame vektorių taikyme įtraukimas, kas gali būti modeliuojama kaip pridėtinis momentinio gradiento triukšmas (pertirbation) betriukšminiam atvejui. Stochastinio periodo bendra forma Kur N(t) yra veiksmo funkcija gauta pakeitus originalią klaidą d(t)-y(t) įvestu triukšmu n(t). Panagrinėkime papildomų periodų (extra terms) statistines savybes (10) ir (11) lygtyse ir pastebėkime kaip jos veikia svorinių vektorių statistiką. Bet pirmiausia, apibrėžkime atsitiktinius kintamuosius: Jeigu atsitiktiniai kintamieji ir nepriklauso vienas nuo kito, ir g ir f funkcijos yra Borelo funkcijos, tuomet f ir gtaip pat yra nepriklausomos [Feller, 1966]. Realiausios funkcijos f(x) įskaitant sigmoido funkciją, plačiai naudojamą neuroniniuose tinkluose yra Borelio funkcijos. Taigi, galima daryti išvadą, kad (10) ir (11) lygtyse triukšmas n(t) nepriklauso nuo O taip pat ir nuo Todėl gali būti užrašytos papildomų periodų (extra terms) tikimybės ir Jų kitimas (variance) ir Iš (14) ir (15) lygties galima daryti išvadą, kad nulinės reikšmės atsitiktinis triukšmas norimame signale nedaro įtakos svoriniams vektoriams, taigi pagrindinė papildomo stochastinio periodo (extra stochastic term) svorio atnaujinimo reikšmė yra nulis. Iš (16) ir (17) lygties daromos dvi svarbios išvados: triukšmas pridėtas prie norimo signalo veikia svorio atnaujinimo kitimą proporciškai kiekvieno svorio jautrumui. Tai reiškia, kad atskiro triukšmo šaltinis išėjime yra išverčiamas į skirtingus triukšmų stiprumus kiekvienam svoriui. Antra, žingsnio dydis arba išorinio triukšmo šaltinio kitimas valdys papildomų periodų (variance of the extra terms) svoriniuose vektorių prisitaikymo formulėse kitimą, gaunamą pridedant triukšmą prie norimo signalo. Pastebima, kad, kai = 0 arba triukšmo kitimas yra nulis, tuomet stochastinis periodas (stochastic terms) išnyksta - lieka tik originalus svorio atnaujinimas (t.y. sprendžiama originali optimizacijos problema). Šie aspektai ir idėjos gautos iš globalios optimizacijos pateikia empirines taisykles išorinių triukšmų šaltinių valdymui, gaunat reikšmingus rezultatus. Modeliavimo pradžioje norėtųsi svoriams uždėti atsitiktinius trikdžius (perturbation), tam, kad būtų leista algoritmui pabėgti iš vietinio minimumo (local minima.). Tačiau artėjant prie adaptacijos pabaigos trikdžių (perturbation) kitimas turi būti sumažintas iki nulio taip, kad svoriai galėtų pasiekti reikšmes duotas originalios optimizacijos problemos. Toliau bus naudojamas (annealing) tvarkaraštis, pasiūlytas Moody [Darken, Chang, and Moody, 1992] Kur o yra inicijuojamo žingsnio dydis, c yra paieškos laiko konstanta, ir NI - iteracijos numeris. Šių konstantų reikšmės turės būti apibrėžtos eksperimentiškai, kadangi jos priklauso nuo problemų. III Modeliavimo rezultatai Patvirtinant anksčiau atliktą analizę, modeliavimo rezultatai bus pateikiami dviem pavyzdžiais. Vienas jų naudoja dviejų-lygių MLP, taip vadinamos lygiškumo problemos (parity problem), kuri buvo pademonstruota vietinio minimumo (local minima) atveju, pažinimui [Rumelhart et al, 1986]. Iš modeliavimo rezultatų bus matyti, kad mokymasis labiausiai gali būti pagerintas naudojant numatytą metodą (proposed approach) ir globalų minimumą, pasiektą statistikine prasme. Kitas pavyzdys naudoja dinaminį neuroninį tinklą TDNN [Waibel et al., 1989] laiko signalų modeliavimui. Antro modeliavimo rezultatai taip pat patvirtina ankstesnę analizę. III.I Eksperimentai su MLP Spresime 3 bitų lygiškumo problemą. Tinklo dydis 3-3-1, t.y. 3 įėjimo neuronai, 3 paslėpti neuronai, ir 1 išėjimo neuronas. Netiesiškumas (nonlinearity) yra logistinė funkcija. Tiesioginis atgalinis mokymas (backpropagation) yra naudojamas abiem atvejais. Buvo pridėtas Gauso (Gaussian) triukšmas su  =0.001 prie norimo signalo ir parinkti atitinkami parametrai 18 Lygtyje: c= 500 ir o= 0.3. Rezultatai parodyti 2 paveikslėlyje. Stora linija vaizduoja mokymasi su triukšmingu norimu signalu, o punktyrinė linija - su originaliu norimu signalu. Šis pavyzdys rodo, kad mokymasis artėja prie lokalaus minimumo, (local minimum) kuomet naudojamas originalus norimas signalas, bet naudojant triukšmingą norimą signalą mokymasis pasiekia globalų minimumą (global minimum) . Svarbu pabrėžti, kad mokymasis su originaliu signalu, naudoja pastovų žingsnio dydį, kai tuo tarpu signalo su triukšmais žingsnis yra gaunamas iš (18) lygties. Naudojant skirtingus žingsnio dydžius ir skirtingus pradinius (initial) svorius, buvo pasiekti panašūs rezultatai. Tam, kad patvirtinti šio algoritmo konvergavimo galimybę, buvo remiamasi Monte Carlo modeliavimai su 100 bandymu. Rezultatai pavaizduoti 3 Paveiksle, kur punktyrinė linija yra 100 veiksmų rezulatai originaliam signalui, o stora linija - 100 veiksmų rezulatatai triukšmingam signalui. Šiame eksperimente, svoriai yra parenkami atsistiktinai, o žingsnio dydis o atsitiktinai parenkamas iš intervalo [0,1, 0,7]. Kuomet globalus minimumas (global minimum) yra 0, tuomet yra lengva paskaičiuoti reikšmę ir pokytį (mean and variance) 100 galutinių klaidų, kurios pateiktos 1 Lentelėje. Dar daugiau, mokymasisi su triukšmingu signalu laike 99% priartėjo prie globalaus minimumo, o su originaliu signalu tik 26%. Iš 1 Lentelės, galima daryti išvadą, kad su triukšmingu signalu, mokymasis konverguoja į globalų minimumą; bet su originaliu signalu, mokymasis statistikine prasme nekonverguoja. Taigi, iš šių modeliavimo rezultatų galima daryti išvadą, kad triukšmingas signalas leidžia mokymosi algoritmui išeiti iš lokalaus minimumo (local minima). III. II Eksperimentai su dinaminiu neuroniniu tinklu III.I dalyje buvo pademonstruoti statinio neuroninio tinklo modeliavimo rezultatai. Tam, kad patvirtinti, jog aprašytas metodas taip pat veikia ir dinaminiuose neuroniniuose tinkluose. Dinaminės sistemos modeliavimui bus naudojamas TDNN [Waibel et al.,1989]. Bus nagrinėjama tokia sistema, Kur ',' žymi diferencijavimo operatorių. Sistemos įėjimai yra sinusoidžių aibė, Su atsitiktine faze l.. 4 ir 5 Paveikslėliuose vaizduojami sistemos įėjimo ir atitinkamai normalizuoti išėjimo signalai. TDNN tinklo struktūra demonstruojama 6 Paveikslėlyje, kur naudojamas keturių lygių vėlinimas. Šiame tinkle, kaip įėjimai į paslėptą lygį naudojami tik du įėjimo signalai x(t) ir x(t-4). Netiesiškumas (nonlinearity) paslėptuose neuronuose - tai logistinė funkciją. Išėjimas turi vieną tiesinį neuroną. Mokymosi algoritmas - tai BP, kur pavyzdžių klaidos surandamos atimant tinklo išėjimą y(t) iš sistemos d(t) išėjimo. Mokymosi kreivės pavaizduotos 7 Paveikslėlyje, kur triukšmo signalo žingsnio dydis surandamas naudojant (18) Lygtį, kur c=10, 0.01, ir triukšmo kitimas 2 =0.001 . Aiškiai matyti, kad su triukšmingu signalu konvergavimas yra greitesnis ir pasiekiamas žemesnis MSE. Naudojant skirtingus žingsnio dydžius ir svorius, pasiekiami panašūs rezultatai su MSE minimumu lygiu 0,0091. Paveikslėlyje 8 pavaizduotos mokymosi kreivės 100 mokymosi veiksmų, kur žingsnio dydis atsitiktinai parenkamas iš intervalo [0,1, 0,01], o svoriai taip pat yra atsitiktiniai skaičiai. Kadangi nėra žinomas šios problemos globalus minimumas, todėl naudojamas MSE minimali reikšmė 0,0091 kaip globalaus minimumo įvertis. 2 Lentelė atspindi statistikinius rezultatus 100 eksperimentų. 72% (trails) su triukšmingu signalu pasiekė globalų minimumą, ir tik 8% (trails) pasiekė globalų rezultatą su originaliu signalu. Daroma išvada, kad mokymasisi su triukšmingais signalais yra mažiau nepastovus ir mokymosi kreivės taip pat yra daug lygesnės. (smoother) IV.Discussion Eksperimentiškai buvo pademonstruota, kad mokymasis su triukšmingais signalais padidina pastovaus žingsnio dydžio BP algoritmo paieškos galimybes. Tai yra pasiekiama be papildomos kainos algoritmų realizavimo perioduose (This is accomplished at no extra cost in terms of algorithm implementation,), kadangi naudojamas tiesioginis atgalinis mokymas (straight backpropagation.) Papildomos savybės yra gaunamos įvedant nulinės reikšmės valdomo kitimo Gauso triukšmą ir žingsnio dydžio nustatymui pasinaudojant (18) Lygtimi. Buvo pademonstruota, kad triukšmo pridėjimas prie norimo signalo svorių atnaujinimo formulėse prideda nulinės reikšmės stochastinį periodą (that adding noise to the desired signal adds a zero mean stochastic term in the weightupdate formulas.). Nors atskiras triukšmo signalas ir yra įvedamas į norimą signalą, tačiau stochastinio periodo kitimas kiekvienam tinklo svoriui skiriasi (proporcingai kiekvieno svorio jautrumui). Dar daugiau, šio periodo kitimas tiesiogiai valdomas žingsnio dydžio arba išorinio triukšmo šaltinio kitimo. Tai reiškia, kad triukšmo pridėjimas prie norimo signalo yra labai paprasta ir efektyvi procedūra mokymosi proceso ištraukimo iš lokalaus minimumo. Kitimas arba žingsnio dydis turi būti parinktas (anealing) pritaikymo metu. Parinkimo (anealing) realizavimui buvo panaudota Moodžio paieška ir konvergavimo procedūra, tačiau kiekvienai problemai spręsti parametrai turi būti surandami eksperimentiškai. Žingsnio dydžio planavimas, toks, kad būtų įveiktas lokalus minimumas, išlieka atviras klausimas ne tik šiame metode, bet taip pat ir kituose stochastiniuose algoritmuose tokiuose kaip sumodeliuotas parinkimas (simulated annealing) [Kirkpatrick et al., 1983]. Mokymosi algoritmų lankstumo padidinimui yra siūlomi du skirtingi žingsnių dydžiai, vienas gradientui ir kitas - triukšmui. Ši procedūra turi neišvengiamą jungtį su globaliu optimizavimo metodu, vadinamu stochastiniu funkciniu nesklandumų šalinimu (stochastic functional smoothing) [Rubinstein, 1981 and 1986]. Priede aiškinama, kad tiesioginė stochastinio funkcinio nesklandumų šalinimo versija sutrikdo gradientą kartu su triukšmo periodu proporcingai Hesano paviršiui. ( an on-line ver-sion of stochastic functional smoothing perturbs the true gradient with a noise term proportional to the Hessian of the performance surface.) Kuomet signalas pridedamas prie norimo signalo, tikrinis (true) gradientas taip pat yra paveikiamas triukšmų periodo. Šiuo atveju poveikis yra proporcingas naujos veikimo funkcijos gradientui, kuris gaunamas iš originalaus skirtumo tarp d(t) ir y(t), kartu su įvestu triukšmu. Šis paviršius yra susijęs su originaliu, bet gali ir žymiai skirtis. Taigi, kuomet triukšmų šaltinis paprastai yra nustatomas į nulinę Gauso reikšmę, galima tikėtis mažiau optimalių rezultatų, lyginant su stochastinės funkcijos lyginimu (stochastic functional smoothing.). Tačiau algoritmo paprastumas ir geras veikimas gautas eksperimentuose skatina toliau dirbti prie šio metodo. Priedas Šio priedo tikslas yra susieti triukšmo pridėjimą prie norimo signalo naudojant stochastinį funkcinį lyginimo metodą, kuris yra globali optimizacijos procedūra. A.I Stochastinio funkcinio lyginimo optimizacijos apžvalga Stochastiniame funkciniame lyginime, originali neišgaubta funkcija yra perkeliama pagalbinės lyginimo funkcijos, kuri turi kai kurias optimizavimo savybes (t.y. atskiras minimumas). Dirbant su lyginimo funkcija, gali būti atsrastas optimalios problemos globalus minimumas . Lyginimo kainos funkcijos klasė parametrizuota ß yra apibrėžiama kaip [Rubinstein, 1981 and 1986] Kur ß yra valdymo parametras, o y yra atsitiktinis dydis. Dėl J ˆ (wtam, kad būti naudingam originaliai optimizacijai, h ˆ (v impulso atsakymas turi tenkinti keleta sąlygų [žr. Rubinstein, 1981 ir 1986 detaliau], taip, kad parametras apsprendžia lyginimo taikomo J(w) laipsnį. Dideliam lyginimo poveikis yra didelis ir atvirkščiai. Kuomet  0 J ˆ () = J , tuomet nėra lyginimo. Intuityviai aišku, kad norint išvengti lokalaus minimumo, optimizacijos pradžioje  turi būti pakankamai didelis. Tačiau siekiant optimumo lyginimo efektyvumas turi būti mažinamas leidžiant ß artėti prie nulio. Taigi minimumo taške w* laukiamas sutapimas tarp J(w) ir J ˆ ( Atitinkamai, konstruojant iteratyvią w* paieškos procedūrą, yra reikalinga lyginimo funkcijų aibė J ˆ(ß s=1,2,...... Jei signalo atsakymo dalis yra išrenkama kaip daugianormalinė funkcija su dydžiu n ir kitimu ß, tai Lyginimo kainos funkcijos gradientas gali būti įvertintas taip [Styblinski and Tang, 1990] Kur N yra pavyzdžių su daugybe kintamųjų iš (23) Lygties skaičius. Taigi, lyginimo kainos funkcijos gradientas gali būti randamas iš originalios kainos funkcijos. A.II Tiesioginė stochastinės lyginimo funkcijos Optimizavimo realizacija Susiejami triukšmo norimame signale poveikis ((10) ir (11) lygtys) su tiesiogine lyginimo funkcinių gradientų realizacija ((24) Lygtis)). Bus taikoma stochastinės aproksimacijos savybė [Robbins and Monro, 1951]. Kuomet ISE aproksimuoja (stochastine prasme) į MSE ir gradiento operatorius yra tiesinis operatorius, lyginimo kainos funkcijos gradientas εˆ gali būti įvertintas pagal analogiją su Lygtimi (25), taip Dėl supaprastinimo, čia yra ignoruojamas diskretinio laiko indeksas t. Reiktų pabrėžti, kad iš L.(24), kuri atspindi originalios stochastinės lyginimo funkcijos optimizacijos artėjimą prie L.(26), kuri yra tiesioginis L.(24) įvertis, tik vienintelė stochastinės aproksimacijos savybė buvo taikoma taip, kad būtų garantuotas tiesioginio įvertinimo stabilumas [Robbins and Monro, 1951; Kusher and Calrk, 1978; Wang and Principe, 1995]. Tiesioginis vienpusisi įvertis naudojamas L.(26) yra pagrindas gradiento įverčio naudojamo LMS ir BP algoritmuose. L.(26) išreiškia įvertinimą ε(w) gradiento, kuomet w yra paveikiamas atsitiktinio kintamojo βv j . Šis metodas praktiniam realizavimui yra per brangus, kadangi svoriai turi būti veikiami (gradiento skaičiavimui pageidaujamas antras tinklas). Taigi, šis metodas tiesiogiai nėra įgyvendinamas. Realizacijos supaprastinimui siūloma atlikti Teiloro seriją ekspansijų apie w, ir antrame etape jį suskaidyti. Literatūra 1. Darken, C., Chang, J., and Moody, J., “Learning Rate Schedules for Faster Stochastic Gradient Search,” IEEE Neural Networks for Signal Processing, 1992. 2. Fahlman, S., “Fast-Learning Variations on Back-Propagation: An Empirical Study,” In Proc. Of 1988 Conn. Model Summer School. 3. Feller, W, An Introduction to Probability Theory and Its Applications, Vol. 1, 2rd ed. Wiley, NewYork, 1966. 4. Haykin, S, Neural Networks---A Comprehensive Foundation, Macmillan College Publishing Company, New York, 1994. 5. Hertz J., Krogh A., Palmer R. G., “Introduction to the theory of neural computation,” Addison-Wesley,1991. 6. Hinton G. E., “Connectionist learning procedure,” In machine learning: Paradigms and methods, J. G. Carbonell, ed., pp. 185-234. MIT Press, Cambridge, MA, 1989. 7. Holmstrom L., and Koistinen, P., “Using Additive Noise in Back-Propagation Training,” IEEE Trans. on Neural Networks, Vol. 3, No.1, 1992. 8. Kirkpatrick, S., et. al., “Optimization by simulated annealing,” Science 220, 671-680. 9. Krogh, A. and Hertz, J., “Generalization in a Linear Perceptron in the Present of Noise,” J. Phys. A: Math. Gen. 25(1992) 1135-1147. 10. Kushner, H., “Asymptotic Global Behavior for Stochastic Approximation and Diffusions with Slowly Decreasing Noise Effects: Global Minimization via Monte Carlo,” SIAM J. APPL.MATH. Vol. 47, No. 1 Feb., 1987. 11. Kushner, H, and Clark, D. S., Stochastic Approximation Methods for Constrained and Uncon-strained Systems, Springer-Verlag, New York, 1978. 12. Matsuoka, K., “Noise Injection into Inputs in Back-Propagation Learning,” IEEE Trans. Systems, Man, and Cybernetics, Vol. 22, No. 3, 1992. 13. Richard M., Lippmann R. P., “Neural network classifiers estimate Bayesian a posteriori probabil-ity,” Neural Computation, 3, 461-483, 1991. 14. Robbins, H., and S. Monroe, “A stochastic approximation method,” Annals of Mathematical Sta-tistics 22, 1951. 15. Rognvaldsson, T., “On Langevin Updating in Multilayer Perceptrons,” Neural Computation, 6.916-926, 1994. 16. Rubinstein, R., Simulation and the Monte Carlo Method, Wiley,1981. 17. Rubinstein, R., Monte Carlo Optimization, Simulation and Sensitivity of the Queueing Networks,Wiley, 1986. 18. Rumelhart et al, Parallel Distributed Processing, Vol.1, MIT Press, 1986. 19. Styblinski, M.A., and Tang, T.-S, “Experiments in Nonconvex Optimization: Stochastic Approxi-mation with Function Smoothing and Simulated Annealing,” Neural Networks, Vol.3, 1990. 20. Szu, H., “Fast simulated annealing,” AIP conf. Proc. 151:Neural Networks for Computing, Snow-bird, UT, 1986. 21. Waibel, A., T. Hanazawa, G. Hinton, K. Shikano, K. J. Lang, “Phoneme recognition using time-delay neural networks,” IEEEE Trams. ASSP-37, 1989. 22. Wang, C., and J. C. Principe, “On-line stochastic functional smoothing optimization for neural network training, submitted to Neural Networks, 1995. 23. Werbos, p., “Generalization of backpropagation with application to a recurrent gas market model,” Neural Networks, 1, 339-356. 24. Widrow, B., and Hoff, M., “Adaptive switching circuits,” IRE WESCON Convention Record, pp.96-104, 1960.
Informatika  Kursiniai darbai   (164,25 kB)
Natris
2010-01-04
Naujajame Testamente minima medžiaga neter, kuri buvo naudojama skalbimui. Ta pati medžiaga, kuri buvo žinoma dar senajame Egipte, minima graikų (Aristotelis, Dioskoridas) nitron pavadinimu, o senovės romėnų (Plinijus) buvo vadinama nitrum . Visais šiais atvejais, matyt, kalbama apie sodą, t.y. natrio karbonatą ir, iš dalies, apie potašą, kurio tuo metu nesugebėta atskirti nuo sodos. Arabų alchemikai vietoje termino nitrum vartojo natron . Alchemiko Geberio (14-15 a.) rankraščiuose greta pirmą kartą pavartoto termino soda sutinkamas pavadinimas alkali. Alchemikams priimtiniausi buvo pavadinimai, atspindintys atitinkamų medžiagų kilmę. Pvz., potašas gautas iš vyno akmens, buvo vadinamas sal tartari, o gautas iš augalų pelenų – sal vegetable. Nuo 1600 m. šarminių metalų druskos vadinamos sal lixiviosium, iš kurio kilo vokiškas žodis “Laugensalz”. Skirtumus tarp natrio (valgomosios druskos) ir kalio, kuris tuo metu karbonatų pavidalu buvo gaunamas iš augalų pelenų, pirmasis pažymėjo Štalis (Stahl, 1660-1734 m.) 1702 metais. Dviejų elementų egzistavimą eksperimentiškai pirmasis įrodė Diumelis de Monso (Duhamel de Monceau, 1700-1781 m.) . Markgrafas 1758 m. nustatė, kad šie elementai skirtinga spalva nudažo liepsną. Klaprotas (Klaproth, 1797 m.) pirmą kartą įrodė, kad kalis, nepaisant tuo metu paplitusio pavadinimo alkali vegitable , sutinkamas ir mineraluose. 18 amžiuje chemikai žinojo jau daug įvairių natrio druskų. Natrio druskos plačiai buvo naudojamos medicinoje, apdorojant odas, audinių dažymui. Tačiau iki 19 a. elementas vis dar nebuvo atrastas. Šis metalas buvo per daug aktyvus, todėl tradiciniais cheminiais metodais jo išskirti nepavykdavo. 1807 m. lapkričio 19 d. Karališkosios draugijos posėdžio metu seras H. Devis (Davy) Paskelbė atradęs du naujus elementus – natrį ir kalį. Tai padaryti jam pavyko elektros srovės pagalba, panaudojant vienintelį tuo metu pastovios srovės šaltinį – Voltos stulpą. D. Mendelejevas apie šį atradimą rašė: “Sujungdamas su teigiamu (vario ar anglies) poliumi gabalą drėgno (siekiant padidinti laidumą) natrio šarmo ir išskaptavęs jame įdubimus, pripildytus jame gyvsidabrio, sujungto su stipraus Voltos stulpo neigiamu poliumi, Devis pastebėjo, kad tekant srovei, gyvsidabryje tirpsta įpatingas metalas, mažiau lakus už gyvsidabrį ir sugebantis skaldyti vandenį, vėl sudarydamas natrio šarmą”. Devis pirmasis ištyrė natrio ir kalio savybes, pažymėdamas jų sugebėjimą lengvai oksiduotis, ir nurodė, kad natrio garai užsidega ore. Nepaisant to, kad H. Devio atradimas buvo didžiulis atardimas chemijoje, to meto technikai jis nedavė apčiuopiamos naudos. Juolab, kad niekas ir nežinojo, kokią naudą aplamai gali duoti minkšti ir labai aktyvūs bei užsidegantys ore, veikiant vandeniui, metalai. PAPLITIMAS GAMTOJE Kadangi natris lengvai oksiduojasi, laisvas apčiuopiamais kiekiais gamtoje nesutinkamas. Įvairių junginių pavidale natris sudaro 2,64% visos žemės plutos masės. Natrio pėdsakai aptikti Saulės atmosferoje ir tarpžvaigždinėje erdvėje. Tirpių druskų pavidale hidrosferoje natris sudaro ~2,9%, esant bendram 3,5-3,7% jūros vandens druskingumui. Baltijos jūros vandenys turi tik 0,6-1,7% NaCl, kai tuo tarpu Viduržemio jūros vandenyse jo yra iki 3%, o Raudonojoje jūroje iki 3,5%. Uždarose jūrose šios druskos kiekis dar didesnis. Negyvosios jūros vandenyse greta kitų druskų yra ~20% NaCl. Absoliutus kiekis natrio jūros vandenyse sudaro ~1,5·1016 tonų. Žemės plutoje natris sutinkamas įvairių druskų pavidale. Svarbiausios iš jų: natrio chloridas NaCl (akmens druska, galitas), natrio sulfatas Na2SO4·10H2O (mirabilitas, glauberio druska), natrio nitratas NaNO3 (Čilės salietra), natrio-aliuminio heksafluoridas 3NaF·AlF3 (kriolitas), tetraboratas Na2B4O7·10H2O (boraksas, tinkalas), silikatai – lauko špatai Na[AlSi3O8] (albitas), nefelinas Na[AlSiO4], sodalitas Na3[Al3Si3O12]·NaCl, neozanas Na3[Al3O12]·Na2SO4, gajuinas Na3[Al3Si3O12]·(Na2, Ca)[So4], lazuritas (ultramarinas) Na3[Al3Si3O12]·Na2S2, skapolinas Na3[Al3Si9O24]·NaCl ir kt. Kartu su Ca, Si, Ba, Mg, Al ir retaisiais elementais natris įeina į gamtinių silikatų sudėtį. Nedideli natrio kiekiai yra augaluose, pvz., tūkstantlapio (Achillea milleofillium) žolėje rasta tik 0,0006% Na. Šviežioje jūros žolėje (Zostera morina) yra 0,547%, o jos pelenuose 16,78% Na. Natrio junginiai, daugiausia natrio chlorido pavidale, sutinkami gyvūnų organizmuose. Taip, pvz., kraujo plazmoje natrio jonai sudaro 0,32%, kauluose 0,6%, raumenų audiniuose 0,6-1,5%. Papildydamas natūralius Na nuostolius, žmogaus organizmas kasdien turi suvartoti 4-5 g natrio NaCl pavidale. Natrio druskų žaliavų šaltiniai plačiai paplitę Žemėje. Dideli valgomosios druskos klodai slūgso buvusios SSRS teritorijoje (Brianskas-Bachmačius, Ileckas prie Orenburgo, Usolė prie Permės, Sibiras; druskinguose ežeruose – Eltono (26% NaCl), Baskunčiako, JAV (Teksaso valstija, Nju Meksikas, Oklahoma, Kanzasas ir kt.), Austrijoje. Mirabilitas, tenarditas sutinkamas Kara-Bogazgoloje, Sibire, JAV (vakarinės valstijos), Sicilijos saloje, Ispanijoje, Šiaurės Afrikoje. Salietros klodai yra Pietų Amerikoje (Peru, Čilė). Didžiulės mineralo Na2CO3·NaHCO3·2H2O atsargos yra Šiaurės Afrikoje (Šiaurės vakarai nuo Kairo, Alžyras, Sudanas, Libanas), Armėnijoje, Sibire, JAV (Nevados ir Kalifornijos valstijos) ir kitur. GAVIMAS Nepaisant H. Devio atradimo, labaratorijose natris iki 1824 metų buvo retenybė, kol Erstedas nustatė, kad gryną aliuminį galima gauti, redukuojant aliuminio chloridą natriu. Nuo to laiko natrio gavimo technologinių procesų vystymasis tiesiogiai priklausė nuo aliuminio gavimo pramonės vystymosi. Tačiau vėliau aliuminio redukavimui imta naudoti kalį, ir natrio gamyba vėl sumažėjo. Tik po 32 metų A. S. Devilis ir R. Bunzenas įrodė, kad aliuminio gamyboje vis dėl to geriau naudoti natrį, negu kalį. Pagal Devilio metodą natris buvo gaunamas redukuojant sodą anglimi. Kastneris (Castner) 1886 m. šį procesą patobulino, bet po kelių mėnesių amerikietis Holas (Holl) ir prancūzas Eru (Erout) pasiūlė elektrolitinį aliuminio gavimo būdą. Taigi, natrio poreikis rinkoje vėl krito. Tam, kad periodinės elementų lentelės elementas N0 11 vėl grįžtų į gamybines sferas, reikėjo mažiausiai dviejų dalykų: 1) naujų panaudojimo sričių, kurioms būtinai reiklingas natris, ir 2) efektyvių pigaus natrio gavimo būdų. Kastneris 1890 m. patobulino elektrolitinį natrio gavimo iš kaustinės sodos procesą, o 1895 m. Niujorko valstijoje buvo pastatyta gamykla, gaminanti šiuo metodu natrį. Šiuolaikinį natrio gavimo iš išlydyto natrio chlorido procesą pasiūlė Daunsas (Downs) su bendraautoriais. Vieno kilogramo natrio kaina nukrito nuo 4,5$ 1890 m. iki 0,35$ 1953 metais. Tokiu būdu, natris tapo pigiu metalu, o tuo pačiu ir nebrangia žaliava chemijos pramonėje. Jo gamyba nepaliaujamai augo. Taip pvz., pagal Devilio būdą 1885 m. buvo gaminama 5500-6000 kg per metus, Kastnerio – 1888-1900 m. apie 150 t per metus. 1913 metais Europoje jau buvo gaminama 4200 t, o JAV – 1800 t natrio per metus. Pasaulyje 1927 m. buvo gaminama 27 tūkst. tonų natrio. Antrojo pasaulinio karo metais natrio gamyba JAV žymiai išaugo dėl jo panaudojimo natrio cianido ir tetraetilšvino gamybai. Šiuo metu JAV gaminama virš 100 tūkst. tonų natrio per metus, pasaulyje ~200 tūkst. tonų. Gavimo būdai. Yra daug metalinio natrio gavimo iš jo junginių būdų. Ankstesniuose procesuose jo gamybai buvo naudojamas natrio šarmas; tuo tarpu šiuolaikinėje gamyboje daugiausiai naudojamas natrio chloridas. Natris gali būti gaunamas veikiant jo druskas anglimi ar kitais reduktoriais prie temperatūrų, viršijančių jo lydimosi temperatūrą (termocheminės redukcijos procesai) arba elektrolizės būdu. Terminės redukcijos procesai. Gmelino (Gmelin) žinyne nurodoma, kad šiuo metodu natris gali būti gaunamas praktiškai iš bet kurio jo junginio. Natrio karbonatą galima redukuoti medžio anglimi arba koksu, sumaišytu su geležimi; sidabru, aliuminiu arba magniu. Aukštesnėse temperatūrose aliuminis, magnis, kalcis, kalcio hidridas, silicidas ar kalcio karbidas redukuoja natrio chloridą iki metalo. Susmulkinta geležis, ferosilicis, kalcio karbidas ir koksas redukuoja natrį iš išlydito natrio hidroksido. Pagal Gmeliną, natrio silikatas, sulfidas, sulfatas ir cianidas aukštoje temperatūroje irgi gali būti redukuoti iki metalo. Pramoninę reikšmę turi natrio karbonato (kalcinuotos sodos) redukcijos procesas, reduktoriumi naudojant anglį. Procesas vyksta pagal sumarinę reakciją: Na2CO3 + 2C ® 2Na + 3CO(DH0298=231 kcal/g·mol). Reakcija stadijinė: Na2CO3 ® Na2O + CO2 CO2 + C = 2CO Na2O + C ® 2Na + CO Technologinio proceso aprašymą galima rasti specialioje literatūroje. Patentuose siūloma kalcinuotos sodos reakciją vykdyti su anglimi, ištirpdyta išlydytoje geležyje, naudoti medžio anglį ar vykdyti procesą esant sumažintam slėgiui, panaudojant vakuminius siurblius. Natrio karbonato redukcijos procesas 1100°C temperatūroje vykdomas, greitai šaldant gautus natrio garus iki temperatūros, žemesnės už 700°C. Paminėtinas apie 30 metų naudotas Devilio (H. Deville) procesas, panaudojantis natrio karbonato, medžio anglies ir kalkių mišinį, ir Dou (Dow) natrio gavimo procesas, distiliuojant išlydytą natrio karbonato ir anglies mišinį. Kastnerio procesas – vienas iš svarbiausių termocheminių kaustinės sodos (natrio hifroksido) redukcijos procesų. Tai patobulintas Devilio procesas, kuriam charakteringas geresnis reaguojančių medžiagų kontaktas, o pats procesas vyksta prie žemesnių temperatūrų pagal reakciją: 6NaOH + FeC2 ® 2Na2CO3 + Fe + 3H2 + 2Na. Kituose technologiniuose prcesuose geležies karbidas 1000°C redukuoja natrio hidroksidą pagal lygtį: 3NaOH + FeC2 ® 3Na + Fe + 3/2H2 + CO + CO2 . Metalinio natrio gavimui iš natrio hidroksido naudojami įvairūs reduktoriai – grynas kalcio karbidas, jo mišinys su natrio chloridu arba gryna anglis 4NaOH + 2C ® Na2CO3 + 2Na + 2H2 + CO . Termocheminiuose natrio gavimo redukcijos procesuose plačiai naudojamas natrio chloridas arba kiti jo halogeniniai junginiai. Šių junginių redukcija vyksta pagal lygtis: 2NaCl + CaC2 ® CaCl2 + 2Na + 2C 6NaF + Al ® 3Na + AlNa3F6 2NaCl + CaO + C ® 2Na + CaCl2 + CO 2NaCl + Pb ® PbCl2 + 2Na. Kituose technologiniuose procesuose įvairių junginių redukcija vyksta pagal lygtis: Na2B4O7 + 7C ® 2Na + 7CO + 4B Na2S + CaO + C ® 2Na + CaS + CO Na2S + CaC2 ® 2Na + CaS + 2C 2NaCN + Fe ® 2Na + FeC2 + N2 3Na2O2 + 2C ® 2Na2CO3 + 2Na 7Na2O2 + 2CaC2 ® 2CaO + 4Na2CO3 + 6Na 2NaNO2 + 3CaC2 + 6NaF ® 2NaCN + 4CO + 3CaF2 + 6Na 2NaNO2 + 3CaCl2 + 3Na2S ® 2NaCN + 4CO + CaS + 6Na. Natrio gavimas elektrolizės būdu. Šiuo metu tai pagrindinis pramoninis natrio gavimo būdas. Natris gaunamas, elektrolizuojant sulydytą natrio hidroksidą arba natrio chloridą. Elektrolizės metu prie geležies ar nikelio katodų išsiskiria natris, o ant grafito anodo, priklausomai nuo elektrolizuojamų medžiagų, išsiskiria deguonis arba chloras. Katodas 4Na+ + 4e ® 4Na Anodas 4OH– – 4e ® 2H2O + O2 4Cl– – 4e ® 2Cl2 Pirmą kartą elektrolizės būdu natris buvo gautas iš natrio hidroksido (Kastnerio metodas). Šiuo atveju ant anodo vyksta 1) reakcija. Vandeniui difundavus per vonią, ant katodo vyksta antrinė reakcija su natriu: 2Na + 2H2O ® 2NaOH + H2 . Sumarinė reakcija: 4NaOH ® 2Na + 2NaOH + H2 + O2 . Kadangi vanduo reaguoja su puse susidariusio natrio, jo išeiga praktikoje neviršija 50% teorinės reikšmės, o kitos pašalinės reakcijos išeigą gali sumažinti ir dar daugiau. Kastnerio elektrolizeris pavaizduotas piešinyje. Aparatas sudarytas iš apšildomo geležinio indo, kuriame yra išlydytas natrio hidroksidas. Indo apačioje yra geležinis strypas (katodas), kurį gaubia geležinis cilindras (anodas). Elektrolizeryje dar yra trumpas geležinis cilindras, pagamintas iš geležinio tinklo. Pastarasis gaubia viršutinę, pastorintąją katodo dalį ir apsaugo, kad susidaręs ant katodo metalinis natris nepatektų ant anodo. Dėl mažo savo lyginamojo svorio, susidaręs metalinis natris pašalinamas nuo išlydytos masės viršaus. Ant anodo kraunasi OH– jonai ir skiriasi deguonis bei vanduo. Didelė vandens dalis išgaruoja. Dalį vandens skaldo srovė, todėl, be natrio, ant katodo skiriasi ir vandenilis. Išeidamas pro vidinio cilindro dangtį, vandenilis užsidega. Sunkiosios išlydytos masės priemaišos kaupiasi apatinėje elektrolizerio dalyje. Žemiausiuose sluoksniuose kaupiasi atšalęs natrio hidroksidas. Kaip pažymėjo pats Kastneris, svarbu, kad elektrolizerio temperatūra kiek galima mažiau viršytų natrio lydimosi temperatūrą. Priešingu atveju natris maišosi su išlydyta mase ir, veikiamas deguonies, oksiduojasi. Kastnerio elektrolizeris nuo 1891 metų iki 1920 metų buvo žymiai patobulintas, nes tai buvo vienintelis procesas, turintis praktinę reikšmę. Kastnerio elektrolizeris yra paprastos konstrukcijos, elektrolizės procesas vyksta prie žemų (320-330°C) temperatūrų. Pagrindinis jo trūkumas – naudojama palyginus brangi žaliava – švarus natrio hidroksidas. Todėl pastarąjį išstūmė kiti procesai, panaudojantys natrio chloridą. Natrio chlorido elektrolizės procesai. Dar Faradėjus 1883 m. atliko eksperimentus, siekdamas gauti natrį elektrolizės būdu iš natrio chlorido. Literatūroje pateikiama visa eilė patentų apie natrio chlorido elektrolizę. Viena iš labiausiai pavykusių elektrolizerių konstrukcijų – Daunso elektrolizės kamera. Daunso technologinio proceso privalumai – naudojama pigi žaliava (NaCl), susidaro vertingas šalutinis produktas (Cl2 dujos) ir pasiekiama didelė natrio išeiga pagal srovę. Be to sėkmingai išspręsta įrenginių apsaugos nuo korozijos problema. Kadangi metalinis natris aukštose temperatūrose tirpsta išlydytame natrio chloride, būtina kiek galima daugiau sumažinti jo lydimosi temperatūrą. Beje, dėl šios priežasties ilgą laiką nepavyko išskirti natrio iš išlydyto natrio chlorido. Pasirodė, kad pridėjus kalcio chlorido, lydymosi temperatūrą galima žymiai sumažinti – nuo 800°C iki ~600°C. Elektrolizės vonios lydimosi temperatūros sumažinimui įvairūs autoriai siūlė prie natrio chlorido pridėti CaCl2; KCl ir žemės šarminių metalų; KCl ir Na2CO3; KCl ir NaF, KF; NaF ir žemės šarminių metalų chloridų, Na2CO3 . Norint gauti gerus rezultatus, elektrolizinant išlydytą NaCl, būtina: anodas turi būti pagamintas iš grafito numatyti būdus chlorui pašalinti iš anodinės erdvės katodas turi būti metalinis, pageidautina iš geležies numatyti būdus, kaip pašalinti natrį iš katodinės erdvės ir apsaugoti jį nuo galimos sąveikos su oksidatoriais visos elektrolizerio dalys privalo būti atsparios ugniai tarp elektrodinių polių lydynyje neturi būti jokių metalinių dalelių. Daunso elektrolizės kamera pavaizduota piešinyje: Kamera sudaryta iš akmeninio indo, kuriame yra grafitinis strypas A (anodas) ir iš šonų geležiniai katodai K. Anodą dengia geležnis gaubtas 1 ant jo tinklelis 2, skiriantis anodinę ir katodinę erdves. Chloridų mišinys išlydomas elektros pagalba. Išsiskyręs ant katodo natris kyla į viršų ir geležiniais vamzdžiais 3,4 patenka į surinkėją 5. Tokiu būdu skystas natris apsaugomas nuo oro poveikio. Išlydytas natris turi iki 1% kalcio. Lėtai aušinant metalą, kalcio kiekis sumažinamas iki šimtųjų procento dalių – gaunamas techninės kvalifikacijos švarumo elementas. Toliau filtruojant 105-110°C temperatūroje, gaunamo natrio švarumas siekia 99,9% . Gaunamas chloras yra švarus, jį galima suslėgti ir panaudoti. Elektrolizei naudojama ~7V įtampa, metalo išeiga pagal srovę siekia 80-85% . Vienam kilogramui natrio gauti reikalinga apie 11kW val energijos. Paminėtini Akerio (Acker C.), Aškrofto (Ashkroft E.), Mak-Nito (Mc Nitt R.), Danielio (Daneel H.), Siuardo (Seward C.O.), Cibo (Ciba) ir kitų autorių sukurti elektrolizeriai natriui gauti. Elektrolizės būdu natrį galima gauti iš išlydyto natrio karbonato, natrio tetraborato, natrio nitrato, natrio cianido, natrio sulfato ir natrio sulfido arba dvigubos elektrolizės metodu iš nevandeninių jo druskų tirpalų (gautas natrio junginys arba jo amalgama antrą kartą elektrolizinama). FIZINĖS SAVYBĖS Gamtoje sutinkamas tik vienas stabilus izotopas Na23. Bombarduojant natrį neutronais, susidaro b aktyvus izotopas Na24 (skilimo pusperiodis T1/2=15,06 val). Iš viso žinomi 6 radioaktyvūs izotopai. Na22 skildamas spinduliuoja pozitronus – teigiamas daleles, kurio masė artima ellektrono masei (T1/2=2,58 metų). Simbolis Na Atominis numeris 11 Atominė masė 23 (tiksli 22,989768) Masės numeris 23 Protonų skaičius 11 Elektronų skaičius 11 Neutronų skaičius 12 Išorinių e konfigūracija 3s1 Atominis radiusas, Å 1,86 Jono radiusas, Å 0,92 Jonizacijos energija, eV Na0 ® Na+ ® Na2+ ® Na3+ ® Na4+ 5,09; 46,65; 71,3; 99,0; Spektrinės linijos, Å (intesyvi geltona) 5890; 5896 Elemento tipas baltas metalas Kristalinės gardelės tipas kūbinė centruota Būvis kambario temperatūroje kietas Tankis, Kg/m3 971 (H2O=1000) Kietumas 0,5 (deimantas=10) Virimo temperatūra, K 1156,1 (883°C) Lydimosi temperatūra, K 370,96 (97,96°C) Šiluminė talpa 0,29 (H2O=1) Specifinis šiluminis laidumas, W/m·K 1230 Elektrinis laidumas 21 (Hg=1) Specifinė varža, W m 4,3·10-8 Normalusis elektrodo potencialas, V –2,71 Magnetinės savybės paramagnetikas Dielektrinė skvarbtis 60 Temperatūrinės priklausomybės Tankio, Kg/m3 (kieto) dt=0,9725–0,0002011t–0,00000015t2 (skysto) dt=0,9490–0,000223t–0,0000000175t2 Klampumo, puazai (skysto) lgh= –1,09127+382(t+313) Paviršiaus įtempimo, din/cm g=202–0,1t Šiluminio laidumo, kal/cm·s·laipsn°C (kieto) k=0,324–0,00040t (0–97,83°) (skysto) k=0,2166–0,000116t (iki 500°) Elektrinės varžos, mW·cm (kieto) r=4,777+0,01932+0,00004t2 (0-97,83°) (skysto) r=6,225+0,0345t (iki 400°) Dujiniame būvyje (purpurinė spalva) natris sudarytas, daugiausia, iš vienatomių molekulių. Dimerų Na2 skaičius didėja, didėjant temperatūrai (600°K–0,008 dalis Na2; 650°K–0,013; 700°K–0,019; 750°K–0,025). Natrio dujų slėgis labai mažas (mm Hg stulp.)–1,199·10-7 (100°C); 3,958 (500°C); 1998 (1000°C). CHEMINĖS SAVYBĖS Išorinio elektroninio sluoksnio struktūra leidžia manyti, kad natris neturėtų prisijungti elektronų. Kita vertus, vienintelio elektrono atidavimas turėtų vykti gana lengvai, susidarant vienvalenčiam katijonui. Natris iš tiesų lengvai atiduoda savo valentinius elektronus (po vieną vienam atomui) ir pasižymi ryškiomis redukcinėmis savybėmis. Natrio hidroksidas – stipri bazė. Taigi, natris turi pilną kompleksą metalams būdingų cheminių savybių. Tai patvirtina ir fizinės šio elemento savybės. Cheminis natrio aktyvumas didelis. Kai kurios natrio reakcijos su neorganinėmis medžiagomis pateikiamos lentelėje: Elementas Cheminė saveika su Na Deguonis reaguoja gana greitai Azotas nereaguoja Vandenilis greita reakcija, temperatūra virš 300°C Vanduo greita reakcija Anglis reaguoja prie 800-900°C Amoniakas lėtai reaguoja Anglies monoksidas nesant NH3 nereaguoja Anglies dioksidas reaguoja Halogenai: Fluoras užsidega Chloras reaguoja Bromas lėta reakcija (praktiškai nevyksta) Jodas nereguoja Sieros rūgštis šalta koncentruota intensyvi reakcija šalta praskiesta labai intensyvi reakcija Natrio reakcijoms su specifinėmis neorganinėmis medžiagomis skirta daug apžalginių straipsnių. Ypač gausiai tyrinėtos natrio reakcijos skystame amoniajake. Reakcija su vandeniu. Kambario temperatūroje natris energingai reaguoja su vandeniu, susidarant natrio hidroksidui ir skiriantis vandeniliui. Reakcijos metu išsiskyrusios šilumos užtenka natriui išlydyti. Esant dideliam natrio paviršiaus kontaktui su vandeniu, reakcija lydima sprogimo. Natris taip pat reaguoja su paprastu ledu, o vandenilio skyrimąsis nustoja, tik atšaldžius ledą iki -200°C. Kai kurių autorių duomenimis, reaguoti su vandeniu natris pradeda prie -80°C. Natrio reakcijos su vandeniu: Na + H2O ® NaOH + 1/2H2 šiluma DH0298= –33,67 kcal; skysto natrio su vandens garais –45,7 kcal. Natrio reakcija su vandeniu plačiai taikoma praktikoje. Taip pvz., su natriu pašalinami drėgmės pėdsakai iš transformatorinių tepalų. Geri rezultatai gauti džiovinant natriu propilo, izoamilo, fenoksibutilo ir metilo spiritus. Natris gali būti panaudojamas vandens šalinimui iš piperidino ir kitų aminų. Drėgmės šalinimui iš reagentų naudojami ir natrio-kalio lydiniai. Paskirsčius natrį kietame nešėjuje, patogu juo sausinti dujas. Įdomu pažymėti, kad 1920 metais Vokietijoje vietoje degtukų buvo gaminamos natrio lazdelės. Jos buvo pardavinėjamos sausai įpakuotos. Norint įdegti ugnį, reikėjo atkirsti nedidelį gabalėlį šių lazdelių ir patalpinti ant sudrėkinto vandeniu popieriaus lapo. Natrio reakcijos su vandeniu pagalba buvo gauti vandenilio izotopai. Reakcija su deguonimi. Drėgname ore metalinis natris greitai praranda savo sidabrinę spalvą ir tampa blankiai pilku, padengtu oksido plėvele. Ši plėvelė sugeria drėgmę ir anglies dioksidą iš oro, susidarant natrio hidroksidui ir karbonatui. Kaitinamas sausame ore natris užsidega, kai temperatūra artima jo virimo temperatūrai. Vykstant oro ar deguonies sąveikai su natriu, susidaro jo oksido ir peroksido mišinys. Esant žemesnei nei 160°C temperatūrai ir nepakankant deguonies, susidaro tik natrio oksidas. Ilgą laiką buvo manoma, kad susidaro tik du deguoniniai natrio junginiai – oksidas Na2O ir peroksidas Na2O2. Vėliau nustatyta, kad egzistuoja ir peroksidas NaO2. Be to, egzistuoja ir natrio ozonidas NaO3. Išlydytas natris lengvai dega paprastoje atmosferoje – susidaro tiršti oksido dūmai. Iš pradžių, matyt, susidaro natrio peroksidas, kuris reaguoja su metalinio natrio pertekliumi susidarant oksidui. Natrio reakcijų termodinamika su deguonimi pateikiama žemiau: 2Na(k) + 1/2O2(d) ® Na2O(k) DH0298= –100,7 kcal 2Na(sk) + 1/2O2(d) ® Na2O(k) DH0400= –104,2 kcal 2Na(k) + O2(d) ® Na2O2(k) DH0298= –120,6 kcal . Natrio ozonidas gaunamas, leidžiant ozoną per natrio tirpalą skystame amoniake. Susidaro oranžinės ar tamsios spalvos nuosėdos. Kai kurių autorių nuomone, natris savaime užsidega ozono atmosferoje. Praktinį pritaikymą turi tik natrio peroksidas (stiprus oksidatorius). Iš pradžių jis buvo naudojimas šiaudinių skrybėlių blukinimui, dabartiniu metu naudojamas celiuliozės masės balinimui popieriaus gamyboje, kadangi jam reaguojant su vandeniu susidaro natrio peroksidas: Na2O2 + 2H2O ® 2NaOH + H2O2 + 34 kcal . Žinomi sekantys natrio peroksido junginiai: Na2O2; Na2O2·H2O; Na2O2·2H2O; Na2O2·8H2O . Natrio peroksidas naudojamas izoliuojančiose dujokaukėse ir povandeniniuose laivuose kaip deguonies šaltinis: 2Na2O2 + 2CO2 ® 2Na2CO3 + O2 + 111kcal . Labaratorijose Na2O2 naudojamas stipriu oksidatoriumi, lydant metalus. Reakcija su vandeniliu. Natris pradeda absorbuoti vandenilį maždaug 200°C temperatūroje, o 300-400°C temperatūroje proceso greitis suintensyvėja. Jei nesiimama specialių priemonių natrio dispergavimui, aplink jį susidaro kieto natrio hidrido plėvelė ir reakcija sustoja. Natrio hidrido gavimo reakcija yra grįžtama: 2Na + H2 = 2NaH. Susidarymo šiluma 13,8-15,69 kcal/mol . Kadangi reakcija grįžtama, norint gauti produktą, vandenilio slėgis turi būti didesnis už natrio hidrido disociacijos slėgį. Natrio hidridas yra stiprus reduktorius, ypač aukštesnėse temperatūrose. Jis reaguoja su daugeliu oksidatorių, halogenais ar įvairiais jų kovalentiniais junginiais. Natrio hidridas redukuoja sieros rūgštį iki sieros vandenilio ir laisvos sieros. Metalurgijoje vartojamas oksidinių plėvelių pašalinimui nuo paviršiaus. Kasmet sunaudojama virš 1000 t natrio hidrido. Reakcijos su halogenais. Natrio sugebėjimas reaguoti su halogenais nevienodas. Susilietęs drėgnas natris ir fluoras užsidega. Fluoro atmosferoje natris pasidengia fluorido plėvele. Su chloru natris nereaguoja –80°C temperatūroje. Su sausu chloru kambario temperatūroje natris reaguoja silpnai, tačiau išlydytas – dega chloro atmosferoje susidarant natrio chloridui. Natrio reakcija su bromu vyksta tik ant paviršiaus ir 300°C temperatūroje. Kai kurie autoriai nurodo, kad jungiantis šiems elementams, gali įvykti net sprogimas. Lydimas jodas ir natris nereaguoja, bet 300-360°C temperatūroje gali vykti paviršinė reakcija. Termodinaminės natrio reakcijos su halogenais: Na(k) + 1/2F2(d) ® NaF(k) DH0298= –136,0 kcal Na(k) + 1/2Cl2(d) ® NaCl(k) DH0298= –98,23 kcal Na(k) + 1/2Br2(sk) ® NaBr(k) DH0298= –86,03 kcal Na(k) + 1/2J2(k) ® NaJ(k) DH0298= –68,84 kcal . Reakcijos su amoniaku. Natrio reakcija su amoniaku, esant kokso, kurios metu susidaro natrio cianidas, yra viena iš svarbiausių pramonėje šio metalo reakcijų (žr. skyr. “natrio junginiai ir jų panaudojimas”). Tiesa, pastaruoju metu ciano vandenilio rūgštis gaunama tiesioginės sintezės metu, ir šios reakcijos reikšmingumas šiek tiek sumažėjo. Tirpdamas skystame amoniake, natris disocijuoja į teigiamus metalo jonus ir elektronus, kurie yra sugaudomi tirpiklyje. Natrio kompleksiniai junginiai su metalais yra aprašyti daugelio autorių specialioje literatūroje. Žemose temperatūrose labiausiai koncentruoti natrio tirpalai yra sudaryti iš dviejų fazių: praskiestos-tamsiai mėlynos dugne ir virš jos koncentruotos-bornzos spalvos. Natrio tirpalai skystame amoniake skirstomi į dvi kategorijas – katalizinius ir nekatalizinius. Aktyvūs metalai, tokie kaip geležis, kobaltas ir nikelis skaldo tamsiai mėlyną natrio tirpalą amoniake – susidaro natrio amidas. Šia reakcija pagrįstas vienas iš pramoninių natrio amido NaNH2 gamybos būdų. Didžiausi amido kiekiai pagaminami tiesioginės amoniako ir natrio sąveikos metu: 2Na + 2NH3 ® NaNH2 + H2 . Reakcija gali būti vykdoma trimis metodais – esant aukštai 300-400°C (išlydytas natris ir dujinis amoniakas), vidutinei 140-170°C (skystas natris ir dujinis amoniakas) ir žemai -30°C (kietas natris ir kietas amoniakas) temperatūroms. Išlydytas NaNH2 pasižymi dideliu reakcingumu. Jis reaguoja su anglies monoksidu, susidarant natrio cianidui, su anglies dioksidu – susidaro natrio ciano amidas, natrio karbonatas ir natrio cianatas. Išlydytas natrio amidas reaguoja su stiklu. Natrio amidas naudojamas sintetinio dažo indigo, vitamino A ir kitų organinių junginių sintezėje. Kitos reakcijos. Siera , selenas ir teliūras energingai reaguoja su natriu, susidarant sulfidams (Na2S, Na2S2, Na2S3, Na2S4 ir Na2S5), selenidams ir teliūridams. Kambario temperatūroje natris nereaguoja su anglimi, tačiau 800-900°C temperatūroje natrio garai su anglimi sudaro karbidus Na2C2. Natrio junginiai su grafitu išreiškiami formulėmis NaC8 ir NaC16. Natrio sąveika su azotu normaliomis salygomis nevyksta. Yra duomenų, kad iki 300°C sausas azotas natrio atžvilgiu išlieka inertiškas. Aukštesnėse temperatūrose susidaro du reakcijos produktai: natrio azidas NaN3 ir natrio nitridas Na3N. Šildant natrį su fosforu be oro, susidaro fosfidas. Oro astmosferoje reakcija lydima liepsnos – susidaro natrio fosfatas. Reaguojant natriui su fosforu, gali būti gaunami sekantys junginiai: NaP3, Na2P5 ir Na3P . Raudonasis fosforas reaguoja su natriu skystame amoniake; susidaro NaP3·3NH3. Šildant su selenu, susidaro įvairūs natrio selenidai: Na2Se, Na2Se2, Na2Se3, Na2Se4 ir Na2Se6. Natris redukuoja daugelį metalų (išskyrus Al, Mg ir šarminius žemės metalus) iš jų oksidų. Pastaruoju metu padidintas dėmesys skiriamas sunkiai besilydančių metalų (pvz., titano, cirkonio ir kt.) gavimo tyrinėjimams, panaudojant reduktoriumi natrį. Metalinis natris energingai reaguoja su daugeliu neorganinių halogeninių junginių. Tokių reakcijų metu šiuolaikinėje miltelių metalurgijoje gaunama geležis, cirkonis, berilis ir kt. metalai. Reakcija su geležimi vyksta pagal lygtį: FeCl3 + 3Na ® Fe + NaCl . Kai kurios reakcijos su organiniais junginiais. Natris yra plačiai naudojamas organinėje sintezėje. Natrio panaudojimas organinėse reakcijose yra plačiai aprašytas specialiuose apžvalginiuose darbuose. Svarbiausia dabartiniu metu pramoninę reikšmę vis dar turi natrio panaudojimas tetraetilšvino gamybai, kuris pasižymi antidetonacinėmis motorinio kuro savybėmis. Pagrindinė reakcija yra 4PbNa + 4C2H5Cl ® (C2H5)4Pb + 3Pb + NaCl . Kitos svarbesnės natrio reakcijos ir susidarę produktai pateikiami lentelėje: Reakcija Produktas Esterių susidarymo iš alkoholiatų C6H5CH2OC2H5 Fitigo sintezė (alkilaromatinių angliavandenilių gavimas) C6H5C2H5 Alkilinimo (aukštesniųjų šakotųjų spiritų ir eterių gavimas) CH3COCH(C2H5)CO2C2H5 Kondensacijos su alkoholiatais (esterių C2H5CH(CO2C2H5) 2 gavimas) CH3COCH2CO2C2H5 CH3COCH2COCO2C2H5 Perkino sintezė (cinamono rūgščių gavimo) C6H5CH=CHCO2H Pinakolo sintezė pinakolas Orto skruzdžių eterio sintezė HC(OC2H5)3 Ketonų gavimo iš rūgščių druskų sausos (CH3) 2CO destiliacijos būdu (C6H5)2CO Praktinę reikšmę turi natrio reakcijos su alkoholiais, kurių metu gaunami alkoholiatai vėliau panaudojami įvairių esterių sintezei. Reaguodamas natris su kai kuriais polihalogeniniais angliavandeniliais sprogsta. Pvz., natrio-kalio lydinio su anglies tetrachloridu mišinio jautrumas sprogimui yra 150-200 kartų didesnis, negu sprogstamojo gyvsidabrio. Natrio ir kalio sprogimo reakcija su chloroformu panaudojama bomboje. Literatūroje galima sutikti ir kitas sprogstamasias sistemas su natriu. NATRIO PANAUDOJIMAS Metalinis natris (grynas ar jo lydiniai su kitais metalais) plačiai panaudojamas pramonėje. Ilgą laiką dižiausias natrio kiekis (lydinys 10% Na ir 90% Pb) buvo sunaudojamas tetraetilšvino ir įvairių esterių gamyboje bei natrio cianido gamyboje. Kadangi metalinis natris lydosi prie 98°C temperatūros, o verda tik 883°C, jis plačiai panaudojamas šilumos nešėju aviacijos variklių vožtuvuose, liejimo mašinų plunžerių aušinimui, o taip pat eilėje cheminių procesų, užtiktrinant tolygų šildymą 450-650°C temperatūroje. Dėka aukštos virimo temperatūros, mažo neutronų sugaudymo radiuso ir didelio šilumos atidavimo koeficiento natris panaudojamas skystu šilumos nešėju branduolinėje energetikoje. Pvz., amerikietiškose atominėse povandeninėse valtyse panaudojami energetiniai įrenginiai su natrio kontūrais. Reaktoriaus viduje išsiskyrusi šiluma įkaitina natrį, kuris cirkuliuoja tarp reaktoriaus ir garo generatoriaus ir aušdamas gamina vandens garus, panaudojamus garo turbinai sukti. -Metalurgijjoje natris naudojamas įvairiems metalams redukuoti ir jų junginiams gauti. Pvz., švino lydinys, turintis 0,58% Na; 0,04% Li; 0,73% Ca yra labai kietas ir naudojamas vagonų ašių guoliams gaminti. Charakteringas natrio garų švytėjimas naudojamas specialiuose šviestuvuose. Pažymėtina, kad paleidžiant kosminį palydovą į Mėnulį 1959 m. buvo išleistas natrio dujų debesis, pagal kurio švytėjimą buvo tikslinama pastarojo trajektorija. Organinėje sintezėje natrio panaudojimas prasidėjo nuo kondensacijos reakcijų – 1850 m. Viljamsonas gavo eterius. Viurcas 1885 m. sintezavo 2,5-dimetilheksaną iš 2-etilbrompropano ir natrio, o Fitigas 1863 m. šį principą panaudodo alkil aromatinių angliavandenilių sintezėje. Kitas klasikinis pavyzdys – Klaizeno 1863 m. kondensacijos reakcija, kurios metu susintetintas acto rūgšties etilo esteris. Natrio organiniai junginiai yra daugelio vaistinių preparatų sudėtyje (norsulfazolas, natrio salicilatas ir kt.), fiziologiniuose tirpaluose. Radioaktyvus natrio izotopas Na24 naudojamas medicininėje diagnostikoje ir kai kurių leukemijos formų gydimui. Analitinis nustatymas. Natrio jonus tirpale nustatyti sudėtinga, visų pirma, dėl didelio daugumos druskų tirpumo. Kokybiškai natris dažnai nustatomas pagal charakteringą geltonos liepsnos spalvą. Natrį nustatyti galima ir mikroskopo pagalba pagal nusodintų trietanol aminodinitrocikloheksafenoliatų kristalų formą. Kiekybinis natrio nustatymas svorio metodu grindžiamas jo nusodinimu dvigubomis uranilo druskomis. Kiekybiškai natris nustatomas šiais metodais: uranilacetatiniu (nusodinamas NaZn(UO2)3(CH3COO)9·6H2O) magnio uranilacetatiniu (nusodinamas NaMg(UO2)3(CH3COO)9·6H2O ) modifikuotu uranilacetatiniu centrifūginiu poliarografiškai redukuojant uranilo joną panaudojant dihidroksi vynoakmens rūgštį panaudojant kalio-cezio-bismuto nitratą radiometriškai chromotografiškai liepsnos fotometrijos nefeliometriniu mikroanalizės kalorimetriniu spektrometriniais (rentgeno struktūr. analizė, BMR ir kt.) Saugumo technika. Dirbant su natriu, būtina laikytis tam tikrų saugumo priemonių. Natris laikomas po inertinio skysčio sluoksniu (žibalas ir pan.) pervežamas tik uždaruose induose ir specialiai įrengtuose cisternose. Darbo su natriu metu reikia naudoti specialius rūbus, gumines pirštines, akinius ar apsaugines kaukes. Darbo vietose privalo būti priešgaisrinis inventorius, o gesintuvai užpildyti sausu natrio chloridu, natrio karbonatu, grafitu ir pan. Ugnį gesinti vandeniu, esant natrio, kategoriškai draudžiama, nes gali įvykti sprogimas. NATRIO JUNGINIAI, JŲ GAVIMAS, SAVYBĖS IR PANAUDOJIMAS Natrio junginiai labai paplitę gamtoje. Kaip minėta, jie randami natrio chlorido, natrio nitraro, natrio sulfato, įvairių lauko špatų ar kitokių mineralų pavidalu. Praktikoje plačiai panaudojamos šio metalo druskos. Junginiai. Natrio jonas yra bespalvis, teigiamas, vienvalentis. Beveik visos druskos tirpsta vandenyje. Silpnųjų rugščių druskų tirpalai dėl hidrolizės turi šarminę reakciją. Natrio hidridas (žr. skyr. “reakcija su vandeniliu”). Natrio oksidas, peroksidas (žr. skyr. “reakcija su deguonimi”). Natrio hidroksidas. NaOH – balta, kristalinė, trapi ir labai higroskopinė medžiaga, kurios lyginamasis svoris 2,13 (g/cm3). Laboratorijose naudojama lazdelių, žirnelių arba žvynelių pavidale. Natrio hidroksidas lydosi, o prie aukštesnių temperatūrų išgaruoja. Tirpinant vandenyje, susidaro įvairūs hidratai (nuo vienos iki septynių molekulių vandens) ir išsiskiria dideli šilumos kiekiai. Toks tirpalas vadinamas natrio šarmu . Jis sugeria iš oro anglies dioksidą ir virsta karbonatu: 2NaOH + CO2 ® Na2CO3 + H2O . Natrio hidroksido tirpumas: 0 20 100 °C 42 109 342 % (g NaOH 100g H2O) Natrio hidroksidas ardo odą, audinius, popierių ir kitas organines medžiagas. Gavimas. NaOH gaunamas, elektrolizuojant valgomosios druskos NaCl vandeninius tirpalus. Prie geležinio katodo skiriasi vandenilis, o prie grafitinio anodo – chloras. Ant elektrodų vyksta sekančios reakcijos: Anodas Cl– – e ® 1/2Cl2 Katodas 1) H+ + e ® 1/2H 2) H2O = H+ + OH– 3) H2O + e ® 1/2H2 + OH– Iš pateiktų lygčių matyti, kad katodinės reakcijos mechanizmas sudėtingesnis, negu anodinės. Kadangi vandenilio išsiskyrimo viršvoltažis žymiai mažesnis už natrio, vandenilis skiriasi ant katodo. Dėka to, atsilaisvina atitinkamas kiekis hidroksilo jonų. Sumarinis katodinis procesas aprašomas lygtimi 3) . Pasišalinus iš tirpalo Cl– jonams, (dėl jų išsikrovimo ant anodo) tirpale susikaupia ekvivalentinis kiekis natrio jonų. Pastariesiems susijungus su OH– jonų pertekliumi katodinėje srityje, kaupiasi natrio hidroksidas. Svarbu, kad elektrolizės produktai negalėtų susimaišyti, nes laisvas chloras su natrio hidroksidu gali duoti natrio hipochloritą – NaOCl. Šiai reakcijai užkirsti siūlomi sekantys būdai: diafragminis, būgninis ir gyvsidabrinis. Plačiausiai naudojamas diafragminis būdas elektrolizerio sritims atskirti labiausiai paplitusiose Europoje Simenso-Biliterio kamerose. Literatūroje pateikiamas detalus įvairių konstrukcijų elektrolizerių aprašymas. Techninis natrio šarmas taip pat gaunamas virinant sodos tirpalą su gesintomis kalkėmis: Na2CO3 + Ca(OH)2 ® 2NaOH + CaCO3 . Reakcijai pasibaigus, tirpalas nupilamas nuo kalcio karbonato nuosėdų ir išgarinamas. Tokiu būdu gautas šarmas vadinamas “kaustine soda”. Natrio hidroksidas plačiai naudojamas technikoje muilui virti, dažų pramonėje, šilkui gaminti, naftos produktams valyti, farmacinių gaminių pramonėje, laboratorijose. Virinant šiaudus ar medieną su natrio šarmu, gaunama celiuliozė popieriaus pramonėje. Natrio chloridas – valgomoji druska, tirpi kristalinė medžiaga. Tirpumas mažai kinta nuo temperatūros. Kasamas iš žemės NaCl vadinamas akmens druska (halitas). Žinomiausios kasyklos yra Šiaurės Vokietijoje, Veličkoje (Lenkija), buvusioje SSRS (Užbaikalė, Solikamskas). Gavimas. Natrio chloridas gaunamas, pagrindinai, trimis būdais: 1) kalnakasybos būdu gautą halitą perdirbant ar išgarinant gamtinius tirpalus, 2) tirpdant po žeme ir išgarinant akmens druską, 3) iš sūriųjų jūros ir ežerų vandenų – garinant ar išsodinant šaldant NaCl iš tirpalų. Techniniams poreikiams NaCl daugiausia gaunamas pirmuoju būdu – šiuo atveju NaCl šalutinis produktas, gaunant kalio druskas. Akmens druska yra užteršta kalcio ir magnio sulfatais. Ekenominiais sumetimais natrio chlorido gavimui naudojama tik švari, turinti 98-99% NaCl, akmens druska. Labiau užteršta druska neišgaunama, o paliekama šachtoje. Valgomoji druska, kurios švarumui taikomi didžiausi reikalavimai, gaminama išgarinant natūralius ar dirbtinius druskingus tirpalus. Dabartiniu metu, daugeliu atveju, tirpalai persotinami akmens druska. Grynas natrio chloridas ne higroskopinis – tik priemaišos “padaro” šią druską drėgna. Natrio chloridas kristalinasi taisyklingų kūbų pavidale, specifinis svoris 2,17. Virš lydimosi temperatūros (801°C) pastebimai lakus. Valgomoji druska būtina gyvam organizmui, ypač dominuojant augalinės kilmės produktams mytybos racione. Todėl jos pridedama į galvijų maistą. Daug NaCl sunaudojama maisto pramonėje sūdymui, konservavimui. Medicinoje naudojamas fiziologinis druskos tirpalas – 0,9% NaCl. Didžiuliai NaCl kiekiai sunaudojami pramonėje beveik visų kitų natrio junginių gamybai. Tai svarbiausia žaliava chloro ir druskos rūgšties, sodos, natrio hidroksido ir kt. junginių gamybai. Pramonėje natrio chloridas naudojamas muilo ir organinių dažų išsūdymui, metalurginiuose procesuose, odų sūdymui, molinių dirbinių glazūravimui, sniego tirpimo pagreitinimui, šaldomųjų mišinių gamybai ir t.t. Natrio karbonatas. Na2CO3 – balti milteliai, kurių lyginamasis svoris 2,4-2,5, lydimosi temperatūra ~850°C. Jie gerai tirpsta vandenyje, tirpdami šyla, nes susidaro dekahidratas. Na2CO3 vadinamas kristaline ar skalbiamaja soda. Žinomi mono- ir hepta- hidratai. Nedideli sodos kiekiai randami gamtoje kai kurių ežerų vandenyje (Kalifornija, Sibiras). Ovenso ežere (Kalifornijos valstija) sodos kiekis vandenyje siekia 100 mln. tonų. Ežerų vandenyse be sodos yra hidrokarbonato. Kai kuriose vietose sutinkami dvigubi hidrokarbonato ir karbonato junginiai Na2CO3·NaHCO3, vadinami trona. Natrio karbonato yra kai kuriuose jūros augaluose. Prieš šimtą metų soda dažnai buvo gaunama iš jūros žolių pelenų. Gavimas. Dabartiniu metu ji gaminama vadinamuoju Solvėjaus (amoniakiniu) būdu iš NaCl. Į koncentruotą NaCl tirpalą slegiant leidžiamas amoniakas ir anglies dioksido dujos, kurios gaunamos kaitinant kalkakmenį: NaCl + NH3 + CO2 + H2O ® NaHCO3 + NH4Cl . Mažai tirpus NaHCO3 nusėda, o NH4Cl lieka tirpale. Kaitinant NaHCO3, gaunama bevandenė kalcinuota soda: 2NaHCO3 ® Na2CO3 + CO2 + H2O . Susidaręs NH4Cl kaitinamas su gesintomis kalkėmis: 2NH4Cl + Ca(OH)2 ® CaCl2 + 2H2O + 2NH3 . Regeneruotas amoniakas ir CO2 , gautas kaitinant NaHCO3 , gražinami į gamybą. Tokiu būdu sodą 1863 m. gavo belgas Solvėjus. Gaunama soda yra labai švari. Senesnis Leblano (1791 m.) metodas, pagal kurį akmens druska apdorojama sieros rūgštimi 2NaCl + H2SO4 ® Na2SO4 + 2HCl . Gautas natrio sulfatas sumaišomas su kalcio karbonatu bei anglimi ir lydomas krosnyje Na2SO4 + 2C ® Na2S + CO2 ; Na2S + CaCO3 ® Na2CO3 + CaS . Atšaldyta masė paveikiama vandeniu – nusėda netirpus CaS. JAV soda buvo gaunama iš kriolito, kaitinant su kalkakmeniu: Na3AlF6 + 3CaCO3 ® Na3AlO3 + 3CaF + 3CO2 . Gautas natrio aliuminatas skaldomas vandeniu ir anglies dioksidu: 2Na3AlO3 + 3H2O + 3CO2 ® 3Na2CO3 + 2Al(OH)3 . Soda yra vienas svarbiausių produktų chemijos pramonėje. Dideli jos kiekiai sunaudojami stiklo, tekstilės, naftos, muilo, popieriaus pramonėje, taip pat vandens mikštinimui garų katiluose. Soda – pagrindinė žaliava gaminant tokius natrio junginius kaip natrio hidroksidą, natrio tetraboratą, fosfatą, tirpų stiklą ir kitus. Cheminėse laboratorijose plačiai naudojama lydymams paverčiant netirpius silikatus, sulfatus ir kt. uolienas tirpiais karbonatais. Namų ūkyje naudojama kaip valymo priemonė. Natrio hidrokarbonatas. NaHCO3 arba geriamoji soda – balti blogai tirpstantys šaltame vandenyje milteliai. Gamtoje NaHCO3 aptinkamas daugelio gydomųjų šaltinių vandenyje. Vandeniniai tirpalai turi silpnai šarminę reakciją. Vandeniniame tirpale (arba šlapias) natrio hidrokarbonatas lėtai išskiria CO2. Virš 65°C CO2 skyrimąsis tampa energingas. Gavimas. Natrio hidrokarbonatas gaunamas leidžiant anglies dioksidą per šaltą sotų Na2CO3 tirpalą: Na2CO3 + CO2 + H2O ® 2NaHCO3 . Natrio hidrokarbonatas – tarpinis produktas, gaminant natrio karbonatą Solvėjau būdu. Natrio hidrokarbonatas vartojamas gaivinamiems gėrimams, vaistams gaminti. Pagrindinė užpildančioji medžiaga tablečių gamyboje yra NaHCO3. Anksčiau geriamoji soda buvo naudojama skrandžio rūgštingumui mažinti. Natrio cianidas. Didžiausi metalinio natrio kiekiai po tetraetilšvino ir sudėtingų esterių gamybos sunaudojami natrio cianido gamybai. NaCN – tai nepaprastai nuodinga, balta, kristalinė medžiaga. Lydimosi temperatūra 564°C, virimo temperatūra 1500°C. Virš 600°C NaCN pradeda skilti ir azoto atmosferoje disocijuoja, išsiskiriant azotui, natrio karbidui, natriui ir angliai. Vandenyje vyksta natrio cianido hidrolizė. Gavimas. Pramoniniu būdu natrio cianidas gaunamas reaguojant natriui, amoniakui ir koksui. NaCN gamybai gali būti panaudojamas bet kuris iš šių būdų: Iš natrio, anglies ir azoto junginių. Tai plačiai palitęs būdas. Iš natrio karbonato pagal Bušerio metodą: Na2CO3 + 2C ® 2Na + 3CO 2Na +2C ® Na2C2 Na2C2 + N2 ® 2NaCN Na2CO3 + 4C + N2 ® 2NaCN + 3CO CaCN2 + 2NaCl + C ® CaCl2 + 2NaCN CaCN2 + CaC2 + Na2CO3 ® Ca(CN)2 + 2CaO + Na2O + 4C Ca(CN)2 + CaO + Na2O + 4C ® 2NaCN + 3CaO + 4C . Šis metodas buvo naudojamas pramonėje. Iš metalų nitridų, natrio ir anglies. Iš metalų karbidų ir natrio druskų, esant azoto. Dažniausiai naudojamas kalcio karbidas. Iš kitų cianidų. Pirmą kartą natrio cianidas buvo gautas iš kalcinuotos sodos ir kalio ferocianido. Redukuojantmetalų oksidus: MO + 2C + Na + 1/2N2 ® M + NaCN + CO . Kastnerio metodas. Pagal šį metodą reaguoja azotas su įkaitintos anglies ir natrio mišiniu. Vietoje azoto kartais naudojamas amoniakas. Šis procesas, kuriame susidaręs natrio amidas reaguoja su medžio anglimi, susidarant NaCN, dabartiniu metu plačiausiai naudojamas grynam natrio cianidui gauti. Procesas vyksta pagal lygtis: 2NaNH2 + C ® Na2CN2 + 2H2 Na2CN2 + C ® 2NaCN . Natrio cianidas panaudojamas neorganinėje ir organinėje cheminėje technologijoje, metalurgijoje ir kitose srityse. Neorganinėje technologijoje jis panaudojamas ciano vandenilio rūgšties gamyboje. Organinėje technologijoje NaCN naudojamas nailono gamyboje. Metalo apdirbamojoje pramonėje NaCN naudojamas įvairioms galvaninėms dangoms gauti, auksui iš rūdų gauti, plieno paviršiaus sukietinimui. Natrio sulfatas. Na2SO4 – bespalviai kristalai, sudarantys keletą modifikacijų. Žinomas metastabilus hidratas Na2SO4·7H2O, kuris iškrenta iš koncentruotų natrio sulfato tirpalų juos atšaldžius iki 12°C. Na2SO4 sudaro kietus tirpalus su daugeliu druskų (Li2SO4, K2SO4, Na2CO3), o taip pat dvigubas druskas su kitais sulfatais; kai kurie iš jų sutinkami gamtoje: Na2SO4·MgSO4·4H2O (astrachanitas), Na2SO4·CaSO4 (glauberitas), Na2SO4·3K2SO4 (glazeritas), 2Na2SO4·2Na2CO3 (berkeitas). Gamtoje Na2SO4 randamas mineralo mirabilito Na2SO4·10H2O, tenardito Na2SO4 bei kitų mineralų pavidalu, aptinkamas taip pat ištirpęs įvairiuose šaltiniuose. Kaip pašalinis produktas, dideliais kiekiais jis gaunamas gaminant druskos rūgštį iš natrio chlorido ir sieros rūgšties. Gaminant kalio chloridą, pašaliniais produktais yra NaCl ir MgSO4. Šaldant šį tirpalą (t<32°C) kristalizuojasi Na2SO4·10H2O druska: 2NaCl + MgSO4 = MgCl2 + Na2SO4 . Kaitinama virš 32°C ši druska lydosi nuosavame kristalizaciniame vandenyje, sudarydama bevandenę druską. Natrio sulfatas lengvai sudaro persotintus tirpalus. Natrio sulfatas, turintis kristalizacinio vandens, vadinamas Glauberio druska. Šią druską dar 1658 m. išskyrė Glauberis, gamindamas druskos rūgštį iš natrio chlorido ir sieros rūgšties. Įdomu pažymėti, kad bevandenio natrio sulfato ir jo dekahidrato pusiausvyros temperatūra yra griežtai fiksuota – 32,383°C. Ją galima pasiekti ir atkartoti be vargo visada. Tirpdamas vandenyje, kristalinis natrio sulfatas stipriai atšaldo vandenį (–18,86 kcal/mol). Jis kartais naudojamas kaip šaldančioji priemonė. Technikoje dažniausiai naudojamas bevandenis natrio sulfatas. Dideli jo kiekiai sunaudojami stiklo, celiuliozės, odų, tekstilės, mineralinių dažų gamyboje ir kt. Bevandenis natrio sulfatas naudojamas dujoms ir kitoms medžiagoms gaminti. Jis taip pat vartojamas medicinoje ir veterinarijoje. Natrio hidrosulfatas. Rūgštus natrio sulfatas NaHSO4 – bespalvė, lengvai tirpstanti druska susidaro, šildant natrio chloridą su koncentruota sieros rūgštimi: H2SO4 + NaCl ® NaHSO4 + HCl . Stipriau kaitinamas su natrio chloridu, pereina į neutralų sulfatą: NaHSO4 + NaCl ® Na2SO4 + HCl . Šildomas hidrosulfatas netenka vandens – susidaro pirosulfatas Na2S2O7, kuris skyla iki sulfato ir sieros trioksido: 2NaHSO4 ® Na2S2O7 + H2O Na2S2O7 ® Na2SO4 + SO3 . Natrio hidrosulfatas ir pirosulfatas vartojami mažai tirpių junginių cheminėje analizėje. Natrio sulfitas. Na2SO3 – bespalviai heksagonalinės sistemos kristalai, pakankamai gerai tirpstantys vandenyje (21g 100g H2O, 20°C). Temperatūrų intervale nuo –3,45 iki 33,4°C kristalizuojasi heptahidrato pavidale – Na2SO3·7H2O. Natrio sulfato tirpalai turi šarminę reakciją, juos rūgštinant, išsiskiria SO2. Natrio sulfitas – stiprus reduktorius. Vandeniniuose tirpaluose jį lengvai oksiduoja deguonis. Natrio sulfitas gaunamas vykstant Na2CO3 ir SO2 tirpalų sąveikai. Sotinimas vykdomas tol, kol gaunamas 45-47% NaHSO3 tirpalas. Tirpalas neutralizuojamas soda ir šaldant kristalinamas Na2SO3·7H2O. Bevandenis natrio sulfitas gaunamas išgarinant koncentruotą tirpalą. Vartojamas fotografijoje, vaistų pramonėje, medicinoje ir sintetinių pluoštų gamyboje. Natrio tiosulfatas (kartais neteisingai vadinamas hiposulfitu). Na2S2O3 – tai bespalviai kristalai, gerai tirpstantys vandenyje. Kaitinamas iki 300°C skyla į Na2SO3 + S; 600°C – į Na2SO4 + Na2S5 . Iki 120°C atsparus oro poveikiui, o prie didesnių temperatūrų oksiduojasi. Iš vandeninių tirpalų prie skirtingų temperatūrų kristalinasi įvairūs hidratai – Na2S2O3·1/2H2O; Na2S2O3·2H2O; Na2S2O3·5H2O. Žinoma visa eilė metastabilių jo hidratų. Natrio tiosulfatas – stiprus reduktorius. Stiprūs oksidatoriai jį oksiduoja iki sulfato, vidutinio stiprumo – iki sulfato ir sieros, o silpni (pvz., jodas) – iki tetrationato Na2S4O6. Tuo paremtas jo taikymas tūrinėje analizėje (jodometrija). Vandeniniai tirpalai turi neutralią reakciją; juos parūgštinus išsiskiria siera. Gaunamas tirpdant susmulkintą sierą karštame natrio sulfito tirpale Na2SO3 + S ® Na2S2O3 arba reaguojant natrio hidrosulfidui su bisulfitu: 2NaHS + 4NaHSO3 ® 3Na2S2O3 + 3H2O . Natrio tiosulfatas plačiai vartojamas fotografijoje vaizdo fiksavimui, t.y. jo apsaugojimui nuo tolesnio šviesos poveikio. Šio proceso metu jis tirpdo sidabro halogenidus, susidarant Ag kompleksiniams junginiams pagal schemą: 2Na2S2O3 + AgHal ® Na3[Ag(S2O3) 2] + NaHal . Natrio tiosulfatas naudojamas tekstilės pramonėje chloro pėdsakų pašalinimui audinių balinimo metu, medicinoje,veterinarijoje ir kaip analitinis reagentas. Natrio nitratas. NaNO3 vadinamas Čilės salietra. Dideliais kiekiais randamas Ramiojo vandenyno pakrantėse, Čilėje, Egipte ir kitur. Tai bespalviai gerai tirpūs vandenyje heksagonalinės struktūros kristalai. Lydimosi temperatūra 308°C. Virš lydimosi temperatūros skyla į NaNO2 ir O2. Dar aukštesnėse temperatūrose skyla į Na2O2 ir Na2O. Natrio nitratas gerai tirpsta skystame amoniake. Sudaro lengvai besilydančius eutektinius mišinius su daugeliu druskų, yra stiprus oksidatorius. Pramonėje gaunamas oksiduojant azoto rūgštimi natrio nitritą, gautą absorbuojant azoto oksidus šarmuose. Dideli kiekiai gaunami, sodą veikiant azoto rūgštimi. Naudojamas kaip azotinės trąšos ar komponentas grūdinimo voniose metalurgijoje ir oksidatorius stiklo pramonėje. Kiti junginiai. Natrio nitritas. NaNO2 – bespalviai ar silpnai gelsvi kristalai; vidutinio stiprumo oksidatorius. Nuodingas. Gaunamas garinant azoto oksidų prisotintus šarmų tirpalus. Naudojamas dažų, jodo gamyboje, maisto pramonėje ir medicinoje. Natrio silikatas. Silikatai aprašomi bendra formule xNa2O·ySiO2 (x,y= 1-3) . Gaunami kristalinant atitinkamos sudėties stiklus. Vandeniniai silikatų tirpalai vadinami skystu stiklu ir gaunami maišant įvairiais santykiais Na2O ir SiO2. Plačiai vartojami gaminant įvairius stiklus ir kaip plovimo priemonė cheminėje technologije. Natrio fosfatas. Ortofosforo rūgštis sudaro tris natrio druskas – NaH2PO4, Na2HPO4 ir Na3PO4 . Kaitinant NaH2PO4, gaunamas Na2H2P2O7 ir polimerinis natrio metafosfatas (NaPO3)x, x=2-6. Kaitinamas Na2HPO4 pereina į pirofosfatą Na4P2O7. Praktinę reikšmę turi pentanatrio trifosfatas Na5P3O10 . Dauguma fosfatų tirpūs vandenyje. Gaunami neutralizuojant kalcinuotos sodos ir natrio hidroksido tirpalus fosforo rūgštimi. Natrio fosfatai naudojami, daugiausia, kaip plovimo ir vandenį minkštinančios priemonės. Natrio fosfatai taip pat naudojami rūdų sodrinimui, tekstilės ir odų pramonėje, įvairiose maisto pramonės šakose, fotografijoje, elektrolitiniuose procesuose. Natrio fluoridas. NaF – bespalviai kristalai, mažai tirpūs vandenyje. Gamtoje sutinkamas mineralo viljonito pavidale, įeina į kriolito ir kitų mineralų sudėtį. Gaunamas lydant lauko špatus su soda ir silicio dioksidu. Naudojamas medienos koncervavimui, kovoje su žemės ūkio kenkėjais, fliusų ir emalių gamyboje, vandens fluoravimui. Natrio bromidas. NaBr – bespalviai kristalai, gerai tirpstantys vandenyje. Sudaro hidratus – NaBr·2H2O ir NaBr·5H2O. Gaunamas natrio šarmo tirpalus veikiant bromu, esant reduktorių. Naudojamas medicinoje ir fotografijoje. Natrio jodidas. NaJ – gerai tirpstantys vandenyje kristalai. Veikiamas šviesos ir deguonies geltonuoja, išsiskiriant jodui. Higroskopinis. Gaunamas tūrinės reakcijos tarp Fe3J8 ir Na2CO3 metu. Vartojamas medicinoje. Natrio hopofosfitas. NaH2PO2·H2O – bespalviai labai higroskopiški kristalai, gerai tirpūs vandenyje. Kaitinamas virš 200°C skyla. Natrio hipofosfitas – stiprus reduktorius. Reduokuoja Au, Ag, Pt, Hg, As; aktyviai reaguoja su stipriais oksidatoriais. Gaunamas iš kalcio hidroksido ir fosforo ar kalcio dihidrofosfito ir sodos. Neorganinėje chemijoje plačiai vartojamas reduktorius; labiausiai paplitęs reduktorius cheminiuose metalų (Cu, Ni, Ag, Au, Pd) nusodinimo porcesuose. TAI ĮDOMU D. Mendelejevas apie natrį. Daugiau nei prieš 100 metų Mendelejevas rašė: “Metalinio natrio gavimas priklauso prie svarbiausių chemijos atradimų ir ne vien tik todėl, kad tai išplėtė mūsų suvokimą apie paprastus kūnus, bet svarbiausia, kad natryje matyti tos cheminės savybės, kurios silpnai išreikštos kituose gerai žinomuose metaluose.” Neorganinė fotosintezė. Deginant natrį sausame ore prie didelių temperatūrų, gaunamas natrio peroksidas Na2O2, kuris pasižymi stipriomis oksidacinėmis savybėmis. Reaguojant natrio peroksidui su anglies dioksidu, vyksta procesas atvirkščias kvėpavimui: 2Na2O2 + 2CO2 ® 2Na2CO3 + O2, t.y. surįšamas anglies dioksidas ir išsiskiria deguonis. Visiškai kaip fotosintezėje. Natrio laidai. Natrio laidumas tris kartus mažesnis, negu vario. Bet natris devynis kartus lengvesnis. Be abejo, plonų elektrinių laidų iš natrio niekas nedaro. Tačiau gaminti magistralinius “laidus” didelėms srovėms perduoti, matyt tikslinga. Tokie “laidai” – metaliniai ar polietileniniai vamzdeliai, pripildyti natrio. Svarbiausia, šie laidai yra pigesni už varinius. Natris vandenyje. Visiems žinoma, kas bus įmetus natrio gabalėlį į vandenį. Tačiau natrio reakcija su vandeniu – ne vien pavojingas užsiėmimas. Priešingai, ši reakcija dažnai būna naudinga. Su natriu patikimai šalinami vandens pėdsakai iš transformatorinių alyvų, spiritų, eterių ir kitų medžiagų, o panaudojant natrio amalgamas (natrio ir gyvsidabrio lydinį) greitai galima nustatyti drėgmės kiekį daugelyje junginių. Amalgama su vandeniu reaguoja žymiai lėčiau. Drėgmės kiekis nustatomas pagal išsiskyrusio vandenilio tūrį. Natrio žiedas apie Žemę. Žemėje laisvas natris nesutinkamas. Tačiau viršutiniuose atmosferos sluoksniuose – 80 km aukštyje – nustatytas sluoksnis atominio natrio. Tokiame aukštyje praktiškai nėra nei deguonies, nei vandens pėdsakų, su kuriais natris galėtų reaguoti. Spektriniais metodais natrio buvo aptikta tarpžvaigždinėje erdvėje. Natris ir auksas. Tuo metu, kai buvo atrastas natris, alchemija jau buvo nemadinga, ir paversti natrį auksu jau nebuvo bandoma. Tačiau dabartiniu metu aukso gavimui sunaudojama nemažai natrio. Aukso rūda apdorojama natrio cianido tirpalu, kuris gaunamas iš elementaraus natrio. Auksas išskiriamas iš kompleksinių natrio cianido tirpalų, panaudojant cinką. Prieš 20-30 metų aukso gamybai buvo sunaudojama kasmet apie 20 tūkst. t metalinio natrio. Natrio butadieninis kaučiukas. 1928 metais pirmą kartą pagamintas sintetinis kaučiukas, gautas polimerinant 1,3-butadieną, panaudojus polimerizacijos proceso katalizatoriumi natrį. Natris ir plovimo priemonės. Pradinėmis medžiagomis sintetinių plovimo priemonių gamyboje dažniausiai būna aukštesnieji alkoholiai t.y., alkoholiai, kurių molekulės sudarytos iš ilgos anglies atomų grandinės. Pastarieji gaunami redukuojant atitinkamas rūgštis natriu.
Chemija  Referatai   (108,99 kB)
Viskas apie nemetalus. Teorinė medžiaga apie atskiras nemetalų grupes: paplitimas, savybės, gavybos būdai. Uždaviniai.
Chemija  Pagalbinė medžiaga   (13 psl., 34,85 kB)
Galaktika
2009-12-23
Jame žvaigždės susispietusois kelis kartus tankiau negu palei Saulę.Iš viso Galaktikoje yra apie 250 milijardų žv.Daugiausiai žv. yra diske.Galaktikos diską sudarančios žvaigždės ir ūkai skrieja aplink Galaktikos centrą apskritomis orbitomis.Saulės nuotoliu nuo Galaktikos centro greitis yra 220 mln.km/s,ji vieną kartą apskrieja aplink centrą per 230 mln. metų.Mūsų Galaktika yra spiralinė sistema.Jos diske didelės masės karštos žvaigždės ,supermilžinės ir dujų bei dulkių debesys išsidėstę spiralės formos vijomis.Galaktikos centro pusėje artimiausia yra Šaulio vija , o anticentro pusėje –Persėjo vija. Galaktikos sferoidą iš visų pusių gaubia Galaktikos vainikas ,kurio spindulys 700 000šm. [Žvaigždžių spiečiai]: Spiečiai- vienodos kilmės erdvinės žvaigždžių grupės,susietos gravitacijos lauku.Pagal erdvinį tankį jie skirstomi:padrikieji ir kamuoliniai .Padrikuosius sudaro 10ir 100,o kamuolinius –1000 ir 100tūkst.žvaigždžių.Padrikųjų skersmuo yra 10-50 šm.eilės,o kamuolinių 3-4 kartus didesnis.Padr. daugiausiai yra Galaktikos diske,o kamuol.-sferoide ir centriniame telkinyje.Padr. spiečių ir disko pavienių žvaigždžių beveik apskritos.Kamuol. spiečiai skrieja aplink Galaktikos centrą ištęstomis elipsinėmis orbitomis. [Tarpžvaigždinė medžiaga]: Galaktikos disko plokštumoje yra tarpžvaigždinės dujos sudaro 99 ir dulkės 1 tarpžvaigždinės medž. masės. dalis šios medž tolygiai pasiskirstę diskeč o kitadalis telkiasi į didesnio ar mažesnio tankio debesis spiralinėse vijose. Duju ir Saulės paviršiaus cheminė sudėtis labai panaši: 74vandenilio, 24helio, 2sunkesniųjų elementų. Dulkes susideda išmetalų ir jų oksidų, Si junginių ir grafito. Kaikurias jų dengia ledo ar sušalusio amonniako sluoksnelis. Dulkės sugeria ir išsklaido už jų esančių žv. šviesą, todėl žv. šviesumas susilpnėja ir jos atrodo raudonesnės. Kai dulkių debesis labai tankus gali visai užstoti toliau esančių žv. ir emisinių ūkų šviesą ir atrodyti kaip dėmės PT-ko ar ūko fone. Jei greta dulkių debesies esanti žv. apšviečia jo priekinę dalį, tai tamsus debesis virš šviesiu atspinžiu ūku. [Visata]: Plija akimi lietuvoje matoma 1galaktika-Andromedos ūkas (Didysis ir Mažasis Magelano debesys-plika akimi matomi pietų pusrotuly) Pagal išvizdą galaktikos skirstomos į spiralines, elipsines, netaisyklingąsias, pekuliarines. Spiralinės (žymimos raide S) panašios į mūsų galaktiką. Pagal centrinio telkinio ir disko matmenų santykį spiralinės galaktikos skirstomos į Sa, Sb, Sc, Sd. Mūsų galaktika- Sb. Spiralinių galaktikų skersmuo 20.000-150.000šm. Elipsinės(žymim raide E) Žvaigždžių tankis didėja artėjant nuo pakraščių link centro Skersmuo-5.000-200.000šm. Netaisyklingosios (žymimos I) be jokios simetrijos, ašies arba centrinio telkinio Skersmuo-5.000-30.000šm. Pekuliarinės turi aktyvius branduolius, jose yra įv formos sprogiminių padarinių. Kvazarai- viena aktyvųjų galaktikos rūšių.daugelis- l. tolimi visatos objektai nutolę per milijardus šv. Jie yra l. stipriai spinduliuojantys galaktikų branduoliai. Spinduliavimo negalim paaiškinti jokiu žinomu energijos šaltiniu, netgi termobranguolinėmis reakcijomis. [Galaktikų grupės ir spiečiai]: apie 30 įvairaus dydžio ir įv. tipų galaktikų nutolusių nuo mūsų galaktikos per 6.5mln. šv sudaro Vietinę galaktikų grupę. Galaktikų grupės, debesys ir pavienės galaktikos sudaro galaktikų spiečius(jie susideda iš 100ų ir 1000čių galaktikų). [Visatos plėtimasis]: greitis tiesiog proporcingasnotoliui r Shy dėsnį nusako Hablo dėsnis: r=v/H; H=75km/s*Mpc. Kai galaktikos tolimo v<50.000km/s v=cz (c=3x108m/s; z=**/*0-raudonasis poslinkis) Visatos amžius –laikas nuo visatos plėtimosi pradžios. Visų tolimųjų galaktikų spektro linijos pasislinkusios į raudonąją spektro pusę (tai rodo, kad galaktikos tolstanuo mūsų dideliu v). [NEW]: Reliatyvistinė astrofizika tiria kosminius reiškinius, susijusius su greičiais arimais šviesos greičiui. Visi galaktikų spiečiai ir paskiros galaktikos, visa, ka tik aprėpia danguje galingiausi pasaulioteleskopai, vadinama –Metagalaktika [žvaigždžių judėjimas ervėje]: saulės, skriejančios orbita aplink Galaktikos centrą, kaimyninės žvaidždės nuolat keičiasi. Kiekvienos žvaigždės judėjimo greitį Saulės atžvilgiu galima išskaidyti į 2 dedamasias: tangentinį(liestinį) ir radialinį (spindulinį) greičius. Tangentinis v apibūdina savąjį žvaigždės judėjimą(statmeną regėjimo spinduliui kryptimi). Dėl žvaigždžių savojo judėjimo kinta artimų Saulei žvaigždžių išsidėstymas danguje. Kuo tolimesnė žvaigždė, tuo mažesnis jos savasis judėjimas. Jei žinomas žvaigždės nuotolis, pagal savąjį jos judėjimą galima rasti tangentinį jos v: V1=4,74*r (V1-tangentinis v (km/s), *- savasis judėjimas per metus r- žvaigždės nuotolis (paralaksas) Radialinis v apskaičiuojamas pagal spektro linijų poslinkį (dėl Doplerio efekto) Kai žvaigždė artėja prie stebėtojo linijos pasislenka į violetinių bangų pusę, kai tolsta- į raudonųjų bangų pusę. Poslinkio dydis su radialiniu v susijęs taip: [*-*0]/ *0=Vr/c (*-išmatuotas bangos ilgis, *0-laboratorinis bangos ilgis c-šv. V ) Kai žvaigždė tolsta, radialinis v>0, kai artėja v<0. Žinant žvaigždės tangentinį ir radialinį greičius, galime rasti erdvinį v Saulės atžvilgiu: v= v2 r+ v2 t ir sin*= Vt/V. [galaktikų susidarymas]: Prieš didįjį sprogimą visata buvo singuliarios (ypatingos) būsenos ir be galo tanki. Elementariosios dalelės, elektromagnetinio spinduliavimo kvantai (fotonai), taip pat visi keturi mums žinomi laukai - gravitacijos, elektromagnetinis, stiprusis ir silpnasis - susidarė per pirmąsias sekundes po didžiojo sprogimo. Praėjus ½ miliono metų, spinduliavimas atsiskyrė nuo medžiagos. Išliko reliktinis spinduliavimas 1 mm ilgio radijo bangų diapazone. Po 250 mln metų dujos pradėjo telktis į progalaktinius gniužulus, o iš jų susiformavo pirmosios galaktikos. Vėliau, suskilus progalaktikoms, iš mažesnių gniužulų susidarė pirmosios žvaigždės ir jų spiečiai. Iš pradžių progalaktiniai dujų gniužulai buvo maždaug sferinės formos. Iš jų susiformavo elipsinės galaktikos bei spiralinių galaktikų sferoidai. Tų progalaktikų, kurios pradėjo tvarkingai suktis aplink savo ašį, dujinė medžiaga susiplojo ir sudarė sukimosi plokštumas - spiralinių galaktikų diskus. Progalaktikos, kurios lėtai sukosi apie savo ašį, liko elipsinėmis. [žvaigždžių susidarymas]: susidaro iš dujų gniužulų, besitraukiančių ir tankėjančių dėl gravitacijos jėgos veikimo. Bet kuris dujų ir dulkių debesis negali būti vienalytis. Dėl atsitiktinio dujų masių judėjimo, jame atsiranda tankesnės vietos, kurių gravitacijos jėga ima traukti aplinkinę medžiagą. Taip susidaro įvairaus dydžio jos gniužulai (globulės). Globulėms toliau traukiantis, centrinė jų dalis įkaista ir ima skleisti infraraudonuosius spindulius, o jos pačios virsta prožvaigždėmis. Kai medžiagos tankis būna 1010 molekulių 1 cm3 ir daugiau, gniužulas tampa neskaidrus spinduliavimui, temperatūra ir slėgis jo centre ima greitai didėti, traukimasis sulėtėja. Tada gniužulas ima spinduliuoti regimąją šviesą (patampa žvaigžde). Masyviausios žvaigždės (50 M) traukiasi kelis mln metų. Saulės masės žvaigždės - 20- 30 mln metų. Tos, kurių masė 0,1 M - kleis šimtus mln metų. [žvaigždžių evoliucija]: kuo žvaigždės masė didesnė, tuo jos centre temperatūra didesnė ir greičiau dega vandenilis. Masyviausios O spektrinės klasės žvaigždės pagrindinėje sekoje būna tik apie 1 mln metų, saulės tipo žvaigždės - 10 mlrd metų, o M spektrinės klasės nykštykės - 100 mlrd metų. Kai žvaigždės, kurios masė tokia pat kaip saulės, centre vandenilis baigia degti, susidaro helio širdis. Dėl gravitacijos ji ima trauktis, jos temperatūra - kilti. Besiveržiant iš gelmių energija plečia virš šerdies esančius sluoksnius. Žvaigždė ima sparčiai didėti, stiprėja šviesis, mažėja paviršiaus temperatūra. Per kelias dešimtis ar šimtus mln metų ji virsta raudonąją milžine. Horizontaliojoje sekoje žvaigždė turi du branduolinės energijos šaltinius - centre dega helis, sferiniame sluoksnyje aplink helio šerdį - vandenilis virsta heliu. Kai helis žvaigždės centre baigiasi, ji palieka horiontaliąją seką ir asimptotine seka vėl artėja prie raudonųjų milžinų sekos. Tuo metu ji turi 2 energijos šaltinius. Gilesniame sluoksnyje dega helis, aukštesniame vandenilis virsta heliu. Abu šie sluoksniai artėja prie paviršiaus. Pagaliau išoriniai sluoksniai neatlaiko energijos srauto, atitrūksta nuo žvaigždės ir burbulo ar žiedo pavidalu išsisklaido. Iš jų susidaro planetiškasis ūkas. Užgesus branduolinėms reakcijoms, žvaigždė susitraukia iki žemės dydžio ir virsta labai tankia baltąją nykštuke. [planetų sistemos susidarymas]: saulę supusio žiedo vidurinėje dalyje per kelis mln metų susidarė šimtai dulkių sankaupų, vadinamų planetesimalėmis. Jos madaug 10 - 100 km dydžio. Planetesimalės suartėdavo ir veikiamos gravitacijos susidurdavo bei susiliedavo į didesnius kūnus proplanetas. Šis procesėlis truko apie 100 mln metų. Kometoidai susidarė saulę supusio disko išoriniame pakraštyje iš ledinių ir silikatinių medžiagų. Po to susiformavusių didžiųjų planetų gravitacijos laukas pakeitė jų orbitas ir nubloškė jas toli nuo saulės. Saulės sistemos planetos susiformavo kartu su saule prieš 4,7 mlrd metų iš to paties prožvaigždinio dujų ir dulkių gniužulo, kurio liekanos sudarė proplanetinį diską. Žemės grupės planetos ir asteroidai susidarė iš metalų, jų oksidų ir silikatų, nes disko viduryje, kur svyravo aukšta temperatūra, ledinės dalelės sublimavo. Didžiosios planetos susiformavo toli nuo saulės iš ledinių ir apledėjusių dulkių. Didžiųjų planetų atmosferų sudėtis nuo pat susidarymo išliko iki šiol nepakitusi. Žemės grupės planetų pradinės atmosferos neišliko. Jų dabartinė cheminė sudėtis susidarė dėl vėlesnių sudėtingų fiinių ir cheminių procesų. Daugelis planetų palydovų ir jų žiedai susiformavo kartu su planetomis iš proplanetinių dujų ir dulkių gniužulų. Dalis palydovų yra buvę asteroidai, vėliau pagrobti planetų gravitacijos lauko. [gyvybė visatoje]: svarbiausios sąlygos gyvybei atsirasti: žvaigždės cheminė sudėtis turi būti panaši į saulės; svarbu, kad žvaigždė užimtų vietą pagrindinėje sekoje. Žvaigždė turi būti pakankamai sena; reikia, kad šalia žvaigždės būtų planeta arba planetos gyvybės zonoje (nei per karšta, nei per šalta); planeta turi būti vidutinės masės; planetos orbita aplink centrinę žvaigždę turi būti artima apskritimui. Dauguma tyrinėtojų linkę manyti, kad galaktikoje yra nuo 100 000 iki 10 mln civilizacijų. Pirmu atveju artimiausia žemei civilizacija turi būti maždaug už 500 šm, o antru - už 100 šm. [antropinis principas]: teigia, kad fizinės sąlygos visatoje nuo pat jos atsiradimo buvo tokios, kad maximaliai padėtų atsirasti gyvybei ir išsirutulioti protingoms būtybėms.
Astronomija  Konspektai   (9,34 kB)
Makroekonomika
2009-11-01
SVARBIAUSIOS MIKROEKONOMIKOS PROBLEMOS. MAKROEKONOMIKOS RODIKLIAI. EKONOMIKOS PUSIAUSVYROS PAGRINDAI. VYRIAUSYBĖS IR TARPTAUTINIŲ EKONOMINIŲ RYŠIŲ ĮTAKA EKONOMIKOS PUSIAUSVYRAI.
Ekonomika  Pagalbinė medžiaga   (14 psl., 32,82 kB)
Makroekonomika
2009-09-10
Svarbiausios makroekonomikos problemos. Makroekonomikos rodikliai. Ekonomikos pusiausvyros pagrindai. Bendrosios paklausos ir pasiūlos modelis. Makroekonomikos pusiausvyros ir nepusiausvyros atvejai. Prielaidos ekonomikos pusiausvyrai tirti: vartojimas ir investicijos, jų kitimo padariniai. Vyriausybės ir tarptautinių ekonominių ryšių įtaka ekonomikos pusiausvyrai. Iždo (fiskalinės) politikos teoriniai bruožai. Valstybės biudžiato deficito problema ir valstybės skola bei jos aptarnavimas. Grynojo exporto kitimų įtaka ekonomikos pusiausvyrai.
Ekonomika  Konspektai   (16 psl., 31,31 kB)
Genetikai organizmus apibūdina dviem terminais – genotipu ir fenotipu. Genotipas - tai organizmo (ląstelės) genetinės informacijos (genų) visuma. Fenotipas – visų organizmo ar ląstelės požymių visuma. Fenotipas yra realizuota, įgyvendinta genetinė informacija. Organizmo požymiai yra organizmo ypatumai, kuriuos galima įvertinti (išsiaiškinti), suskaičiuoti ar išmatuoti. Kiekvienas organizmas turi labai daug požymių, nes kiekvienas organizmas yra sudėtinga sistema, sudaryta iš daugelio dalių, kuriose vyksta sudėtingi reiškiniai.
Biologija  Konspektai   (5 psl., 21,78 kB)
Dvejetainis programavimas. Informacija ir duomenys. Kompiuteriniai duomenys. Skaičiavimo sistema yra visuma būdų ir priemonių, leidžianti užrašyti ar kitaip pateikti skaičius. Skaitmens reikšmė priklauso nuo užimamos vietos (pozicijos) skaičiuje. Skaičiavimo sistemos pagrindu laikomas skaičius, kuris parodo kiek kartų padidėja arba sumažėja vieno ir to paties skaitmens reikšmė, kai jis perkeliamas į vieną iš šalia esančių pozicijų.
Informatika  Konspektai   (82 psl., 162,89 kB)
My SQL
2009-09-02
Apraš sudaro dvi dalys. Pirmojoje dalyje (MySQLlt1.doc) rasite tokius skyrelius: literalai, vartotojo kintamieji, stulpeliai, SELECT ir WHERE operatoriuose naudojamos funkcijos. Antrojoje dalyje rasite įvairių sintaksių aprašymus.
Informatika  Pagalbinė medžiaga   (46 psl., 283,18 kB)
Įvairūs istorijos konspektai: Didieji geografiniai atradimai, reformacija ir kontrreformacija Europoje, Renesansas, Didžioji Prancūzijos revoliucija, JAV susikūrimas, Švietimo epocha, Napoleonas Bonapartas, Renesansas, reformacija ir kontrreformacija Lietuvoje, žmonijos raida paleolito laikotarpiu, Liublino unija, pramonės perversmas, politinių doktrinų susiformavimas XIXa., JAV pilietinis karas, Tautų pavasaris, svarbiausių istorinių įvykių lentelė.
Istorija  Konspektai   (16 psl., 937,58 kB)
Faktoringas
2009-07-09
Šimtai tūkstančių pasaulio įmonių, sudarydamos pirkimo - pardavimo sandorius, naudojasi faktoringo kompanijų paslaugomis. Faktoringas leidžia pritraukti papildomų lėšų prekybai finansuoti, užtikrina stabilius pinigų srautus bei palengvina jų planavimą, sumažina valdymo ir administracines sąnaudas, gali eliminuoti riziką, susijusią su blogais debitoriniais įsiskolinimais, todėl įmonės daugiau išteklių gali skirti savo pagrindinei veiklai.
Ekonomika  Referatai   (11,27 kB)
Vilnius: Švietimo plėtotės centras, 2002. Sis referatas 11-12 klasėms. Gavo gerą ivertinimą. Graži ir įvairi gamta, margų margiausi kraštovaizdžiai.. Nacionaliniai parkai atspindi stambių geografinių sričių kraštovaizdį ir kultūrą. Trys dešimtys regioninių parkų saugo ir reprezentuoja atskirų Lietuvos regionų gamtiniu, etnokultūriniu, rekreaciniu bei estetiniu požiūriu vertingiausias ekosistemas ir gamtos bei kultūros kompleksus.
Geologija  Referatai   (4,99 kB)
Gavau 10. Visur mus supa elektra. Ji tapo neatsiejama pagalbininke mūsų gyvenime... Juk kasdien mes gaminame valgyt ant elektrinės viryklės, arba ką nors pasišildom mikrobangų krosnelėje. Taip pat kiekvieną dieną mes klausomės muzikos, dirbam kompiuteriu ir darom begales kitų darbų.
Fizika  Referatai   (21,77 kB)
Bendravimo ir komunikacijos apibūdinimas. Bendravimas kaip socialinė komunikacija. Klausymasis kaip socialinės komunikacijos dalis. Praktinis dėstytojų ir studentų klausymosi įgūdžių tyrimas. Kadangi klausymasis yra bendravimo ir komunikacijos dalis, pirmiausia reikėtų išsiaiškinti, ką reiškia šios dvi sąvokos ir koks yra tarp jų ryšys. N.Večkienė ir kiti autoriai nurodo, kad lietuvių mokslinėje literatūroje vartojamų bendravimo ir komunikacijos sąvokų aiškinimas yra problematiškas. Painiava pirmiausia kyla dėl to, kad mokslinėje literatūroje anglų ir vokiečių kalba "bendravimo" sąvokos apskritai nėra : paprastai čia vartojama "komunikacijos" sąvoka (angl. communication, vok. Komunikation).
Psichologija  Kursiniai darbai   (20 psl., 111,78 kB)
Sunku surasti žmogų, kuris niekada nepatyrė gėdos jausmo. Greičiau sutiksime tuos, kurie skundžiasi bendraujant skruostus išpilančiu raudoniu, virpančiomis rankomis ir prakaito dėmėmis pažastyse. Tuomet, kai mus kritikuoja, žemina ar išjuokia tie asmenys, kurie mums svarbūs, kuriuos gerbiame ar mylime, neišvengiamai susigesime. Taigi, apžvelgsime gėdos jausmą augant, bei kaip mes su šiuo nemaloniu jausmu gyvename. Uždaviniai: aptarti gėdos jausmą, apžvelgti gėdos jausmo išsivystymo eigą, aptarti gėdos jausmo galimybes ir pavojus kiekviename vystymosi etape, aptarti auklejimo reiksme gedos jausmui, atlikti tyrima(apklausą), bei paanalizuoti jo rezultus.
Filosofija  Referatai   (15 psl., 64,12 kB)
Moralė
2008-10-27
Kalbėjimo įskaitos medžiaga.
Lietuvių kalba  Pagalbinė medžiaga   (86 psl., 176,51 kB)